1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
|
{
lib,
stdenv,
python,
buildPythonPackage,
fetchFromGitHub,
fetchpatch,
symlinkJoin,
autoAddDriverRunpath,
# build-system
cmake,
jinja2,
ninja,
packaging,
setuptools,
setuptools-scm,
# dependencies
which,
torch,
outlines,
psutil,
ray,
pandas,
pyarrow,
sentencepiece,
numpy,
transformers,
xformers,
xgrammar,
numba,
fastapi,
uvicorn,
pydantic,
aioprometheus,
anthropic,
nvidia-ml-py,
openai,
pyzmq,
tiktoken,
torchaudio,
torchvision,
py-cpuinfo,
lm-format-enforcer,
prometheus-fastapi-instrumentator,
cupy,
cbor2,
pybase64,
gguf,
einops,
importlib-metadata,
partial-json-parser,
compressed-tensors,
mcp,
ijson,
mistral-common,
msgspec,
model-hosting-container-standards,
numactl,
tokenizers,
oneDNN,
blake3,
depyf,
opencv-python-headless,
cachetools,
llguidance,
python-json-logger,
python-multipart,
llvmPackages,
opentelemetry-sdk,
opentelemetry-api,
opentelemetry-exporter-otlp,
bitsandbytes,
flashinfer,
py-libnuma,
setproctitle,
openai-harmony,
# optional-dependencies
# audio
librosa,
soundfile,
# internal dependency - for overriding in overlays
vllm-flash-attn ? null,
cudaSupport ? torch.cudaSupport,
cudaPackages ? { },
rocmSupport ? torch.rocmSupport,
rocmPackages ? { },
gpuTargets ? [ ],
}:
let
inherit (lib)
lists
strings
trivial
;
inherit (cudaPackages) flags;
shouldUsePkg =
pkg: if pkg != null && lib.meta.availableOn stdenv.hostPlatform pkg then pkg else null;
# see CMakeLists.txt, grepping for CUTLASS_REVISION
# https://github.com/vllm-project/vllm/blob/v${version}/CMakeLists.txt
cutlass = fetchFromGitHub {
name = "cutlass-source";
owner = "NVIDIA";
repo = "cutlass";
tag = "v4.2.1";
hash = "sha256-iP560D5Vwuj6wX1otJhwbvqe/X4mYVeKTpK533Wr5gY=";
};
# FlashMLA's Blackwell (SM100) kernels were developed against CUTLASS v3.9.0
# (since https://github.com/vllm-project/FlashMLA/commit/9c5dfab6d1746b4a27af14f440e7afd5c01ece68)
# and are currently incompatible with CUTLASS v4.x APIs. The rest of the vLLM
# build uses a newer CUTLASS, so we package both versions.
# See upstream issue: https://github.com/vllm-project/vllm/issues/27425
# See git submodule commit at:
# https://github.com/vllm-project/FlashMLA/tree/${flashmla.src.rev}/csrc
cutlass-flashmla = fetchFromGitHub {
owner = "NVIDIA";
repo = "cutlass";
tag = "v3.9.0";
hash = "sha256-Q6y/Z6vahASeSsfxvZDwbMFHGx8CnsF90IlveeVLO9g=";
};
flashmla = stdenv.mkDerivation {
pname = "flashmla";
# https://github.com/vllm-project/FlashMLA/blob/${src.rev}/setup.py
version = "1.0.0";
# grep for GIT_TAG in the following file
# https://github.com/vllm-project/vllm/blob/v${version}/cmake/external_projects/flashmla.cmake
src = fetchFromGitHub {
name = "FlashMLA-source";
owner = "vllm-project";
repo = "FlashMLA";
rev = "46d64a8ebef03fa50b4ae74937276a5c940e3f95";
hash = "sha256-jtMzWB5hKz8mJGsdK6q4YpQbGp9IrQxbwmB3a64DIl0=";
};
dontConfigure = true;
# flashmla normally relies on `git submodule update` to fetch cutlass
buildPhase = ''
rm -rf csrc/cutlass
ln -sf ${cutlass-flashmla} csrc/cutlass
'';
installPhase = ''
cp -rva . $out
'';
};
# grep for DEFAULT_TRITON_KERNELS_TAG in the following file
# https://github.com/vllm-project/vllm/blob/v${version}/cmake/external_projects/triton_kernels.cmake
triton-kernels = fetchFromGitHub {
owner = "triton-lang";
repo = "triton";
tag = "v3.5.0";
hash = "sha256-F6T0n37Lbs+B7UHNYzoIQHjNNv3TcMtoXjNrT8ZUlxY=";
};
# grep for GIT_TAG in the following file
# https://github.com/vllm-project/vllm/blob/v${version}/cmake/external_projects/qutlass.cmake
qutlass = fetchFromGitHub {
name = "qutlass-source";
owner = "IST-DASLab";
repo = "qutlass";
rev = "830d2c4537c7396e14a02a46fbddd18b5d107c65";
hash = "sha256-aG4qd0vlwP+8gudfvHwhtXCFmBOJKQQTvcwahpEqC84=";
};
vllm-flash-attn' = lib.defaultTo (stdenv.mkDerivation {
pname = "vllm-flash-attn";
# https://github.com/vllm-project/flash-attention/blob/${src.rev}/vllm_flash_attn/__init__.py
version = "2.7.2.post1";
# grep for GIT_TAG in the following file
# https://github.com/vllm-project/vllm/blob/v${version}/cmake/external_projects/vllm_flash_attn.cmake
src = fetchFromGitHub {
name = "flash-attention-source";
owner = "vllm-project";
repo = "flash-attention";
rev = "86f8f157cf82aa2342743752b97788922dd7de43";
hash = "sha256-+h43jMte/29kraNtPiloSQFfCay4W3NNIlzvs47ygyM=";
};
patches = [
# fix Hopper build failure
# https://github.com/Dao-AILab/flash-attention/pull/1719
# https://github.com/Dao-AILab/flash-attention/pull/1723
(fetchpatch {
url = "https://github.com/Dao-AILab/flash-attention/commit/dad67c88d4b6122c69d0bed1cebded0cded71cea.patch";
hash = "sha256-JSgXWItOp5KRpFbTQj/cZk+Tqez+4mEz5kmH5EUeQN4=";
})
(fetchpatch {
url = "https://github.com/Dao-AILab/flash-attention/commit/e26dd28e487117ee3e6bc4908682f41f31e6f83a.patch";
hash = "sha256-NkCEowXSi+tiWu74Qt+VPKKavx0H9JeteovSJKToK9A=";
})
];
dontConfigure = true;
# vllm-flash-attn normally relies on `git submodule update` to fetch cutlass and composable_kernel
buildPhase = ''
rm -rf csrc/cutlass
ln -sf ${cutlass} csrc/cutlass
''
+ lib.optionalString rocmSupport ''
rm -rf csrc/composable_kernel;
ln -sf ${rocmPackages.composable_kernel} csrc/composable_kernel
'';
installPhase = ''
cp -rva . $out
'';
}) vllm-flash-attn;
cpuSupport = !cudaSupport && !rocmSupport;
# https://github.com/pytorch/pytorch/blob/v2.8.0/torch/utils/cpp_extension.py#L2411-L2414
supportedTorchCudaCapabilities =
let
real = [
"3.5"
"3.7"
"5.0"
"5.2"
"5.3"
"6.0"
"6.1"
"6.2"
"7.0"
"7.2"
"7.5"
"8.0"
"8.6"
"8.7"
"8.9"
"9.0"
"9.0a"
"10.0"
"10.0a"
"10.1"
"10.1a"
"10.3"
"10.3a"
"12.0"
"12.0a"
"12.1"
"12.1a"
];
ptx = lists.map (x: "${x}+PTX") real;
in
real ++ ptx;
# NOTE: The lists.subtractLists function is perhaps a bit unintuitive. It subtracts the elements
# of the first list *from* the second list. That means:
# lists.subtractLists a b = b - a
# For CUDA
supportedCudaCapabilities = lists.intersectLists flags.cudaCapabilities supportedTorchCudaCapabilities;
unsupportedCudaCapabilities = lists.subtractLists supportedCudaCapabilities flags.cudaCapabilities;
isCudaJetson = cudaSupport && cudaPackages.flags.isJetsonBuild;
# Use trivial.warnIf to print a warning if any unsupported GPU targets are specified.
gpuArchWarner =
supported: unsupported:
trivial.throwIf (supported == [ ]) (
"No supported GPU targets specified. Requested GPU targets: "
+ strings.concatStringsSep ", " unsupported
) supported;
# Create the gpuTargetString.
gpuTargetString = strings.concatStringsSep ";" (
if gpuTargets != [ ] then
# If gpuTargets is specified, it always takes priority.
gpuTargets
else if cudaSupport then
gpuArchWarner supportedCudaCapabilities unsupportedCudaCapabilities
else if rocmSupport then
rocmPackages.clr.gpuTargets
else
throw "No GPU targets specified"
);
mergedCudaLibraries = with cudaPackages; [
cuda_cudart # cuda_runtime.h, -lcudart
cuda_cccl
libcurand # curand_kernel.h
libcusparse # cusparse.h
libcusolver # cusolverDn.h
cuda_nvtx
cuda_nvrtc
# cusparselt # cusparseLt.h
libcublas
];
# Some packages are not available on all platforms
nccl = shouldUsePkg (cudaPackages.nccl or null);
getAllOutputs = p: [
(lib.getBin p)
(lib.getLib p)
(lib.getDev p)
];
in
buildPythonPackage.override { stdenv = torch.stdenv; } rec {
pname = "vllm";
version = "0.13.0";
pyproject = true;
src = fetchFromGitHub {
owner = "vllm-project";
repo = "vllm";
tag = "v${version}";
hash = "sha256-pI9vQBhjRPlKOjZp6kH+n8Y0Q4t9wLYM7SnLftSfYgs=";
};
patches = [
./0002-setup.py-nix-support-respect-cmakeFlags.patch
./0003-propagate-pythonpath.patch
./0005-drop-intel-reqs.patch
];
postPatch = ''
# Remove vendored pynvml entirely
rm vllm/third_party/pynvml.py
substituteInPlace tests/utils.py \
--replace-fail \
"from vllm.third_party.pynvml import" \
"from pynvml import"
substituteInPlace vllm/utils/import_utils.py \
--replace-fail \
"import vllm.third_party.pynvml as pynvml" \
"import pynvml"
# pythonRelaxDeps does not cover build-system
substituteInPlace pyproject.toml \
--replace-fail "torch ==" "torch >=" \
--replace-fail "setuptools>=77.0.3,<81.0.0" "setuptools"
# Ignore the python version check because it hard-codes minor versions and
# lags behind `ray`'s python interpreter support
substituteInPlace CMakeLists.txt \
--replace-fail \
'set(PYTHON_SUPPORTED_VERSIONS' \
'set(PYTHON_SUPPORTED_VERSIONS "${lib.versions.majorMinor python.version}"'
'';
nativeBuildInputs = [
which
]
++ lib.optionals rocmSupport [
rocmPackages.hipcc
]
++ lib.optionals cudaSupport [
cudaPackages.cuda_nvcc
autoAddDriverRunpath
]
++ lib.optionals isCudaJetson [
cudaPackages.autoAddCudaCompatRunpath
];
build-system = [
cmake
jinja2
ninja
packaging
setuptools
setuptools-scm
torch
];
buildInputs =
lib.optionals cpuSupport [
oneDNN
]
++ lib.optionals (cpuSupport && stdenv.hostPlatform.isLinux) [
numactl
]
++ lib.optionals cudaSupport (
mergedCudaLibraries
++ (with cudaPackages; [
nccl
cudnn
libcufile
])
)
++ lib.optionals rocmSupport (
with rocmPackages;
[
clr
rocthrust
rocprim
hipsparse
hipblas
]
)
++ lib.optionals stdenv.cc.isClang [
llvmPackages.openmp
];
dependencies = [
aioprometheus
anthropic
blake3
cachetools
cbor2
depyf
fastapi
ijson
llguidance
lm-format-enforcer
mcp
numpy
openai
opencv-python-headless
outlines
pandas
prometheus-fastapi-instrumentator
py-cpuinfo
pyarrow
pybase64
pydantic
python-json-logger
python-multipart
pyzmq
ray
sentencepiece
tiktoken
tokenizers
msgspec
gguf
einops
importlib-metadata
partial-json-parser
compressed-tensors
mistral-common
model-hosting-container-standards
torch
torchaudio
torchvision
transformers
uvicorn
xformers
xgrammar
numba
opentelemetry-sdk
opentelemetry-api
opentelemetry-exporter-otlp
bitsandbytes
setproctitle
openai-harmony
# vLLM needs Torch's compiler to be present in order to use torch.compile
torch.stdenv.cc
]
++ uvicorn.optional-dependencies.standard
++ aioprometheus.optional-dependencies.starlette
++ lib.optionals stdenv.targetPlatform.isLinux [
py-libnuma
psutil
]
++ lib.optionals cudaSupport [
cupy
nvidia-ml-py
flashinfer
];
optional-dependencies = {
audio = [
librosa
soundfile
mistral-common
]
++ mistral-common.optional-dependencies.audio;
};
dontUseCmakeConfigure = true;
cmakeFlags = [
]
++ lib.optionals cudaSupport [
(lib.cmakeFeature "FETCHCONTENT_SOURCE_DIR_CUTLASS" "${lib.getDev cutlass}")
(lib.cmakeFeature "FLASH_MLA_SRC_DIR" "${lib.getDev flashmla}")
(lib.cmakeFeature "VLLM_FLASH_ATTN_SRC_DIR" "${lib.getDev vllm-flash-attn'}")
(lib.cmakeFeature "QUTLASS_SRC_DIR" "${lib.getDev qutlass}")
(lib.cmakeFeature "TORCH_CUDA_ARCH_LIST" "${gpuTargetString}")
(lib.cmakeFeature "CUTLASS_NVCC_ARCHS_ENABLED" "${cudaPackages.flags.cmakeCudaArchitecturesString}")
(lib.cmakeFeature "CUDA_TOOLKIT_ROOT_DIR" "${symlinkJoin {
name = "cuda-merged-${cudaPackages.cudaMajorMinorVersion}";
paths = builtins.concatMap getAllOutputs mergedCudaLibraries;
}}")
(lib.cmakeFeature "CAFFE2_USE_CUDNN" "ON")
(lib.cmakeFeature "CAFFE2_USE_CUFILE" "ON")
(lib.cmakeFeature "CUTLASS_ENABLE_CUBLAS" "ON")
];
env =
lib.optionalAttrs cudaSupport {
VLLM_TARGET_DEVICE = "cuda";
CUDA_HOME = "${lib.getDev cudaPackages.cuda_nvcc}";
TRITON_KERNELS_SRC_DIR = "${lib.getDev triton-kernels}/python/triton_kernels/triton_kernels";
}
// lib.optionalAttrs rocmSupport {
VLLM_TARGET_DEVICE = "rocm";
# Otherwise it tries to enumerate host supported ROCM gfx archs, and that is not possible due to sandboxing.
PYTORCH_ROCM_ARCH = lib.strings.concatStringsSep ";" rocmPackages.clr.gpuTargets;
ROCM_HOME = "${rocmPackages.clr}";
}
// lib.optionalAttrs cpuSupport {
VLLM_TARGET_DEVICE = "cpu";
FETCHCONTENT_SOURCE_DIR_ONEDNN = "${oneDNN.src}";
};
preConfigure = ''
# See: https://github.com/vllm-project/vllm/blob/v0.7.1/setup.py#L75-L109
# There's also NVCC_THREADS but Nix/Nixpkgs doesn't really have this concept.
export MAX_JOBS="$NIX_BUILD_CORES"
'';
pythonRelaxDeps = true;
pythonImportsCheck = [ "vllm" ];
passthru = {
# make internal dependency available to overlays
vllm-flash-attn = vllm-flash-attn';
# updates the cutlass fetcher instead
skipBulkUpdate = true;
};
meta = {
description = "High-throughput and memory-efficient inference and serving engine for LLMs";
changelog = "https://github.com/vllm-project/vllm/releases/tag/v${version}";
homepage = "https://github.com/vllm-project/vllm";
license = lib.licenses.asl20;
maintainers = with lib.maintainers; [
happysalada
lach
daniel-fahey
];
badPlatforms = [
# CMake Error at cmake/cpu_extension.cmake:188 (message):
# vLLM CPU backend requires AVX512, AVX2, Power9+ ISA, S390X ISA, ARMv8 or
# RISC-V support.
"aarch64-darwin"
# CMake Error at cmake/cpu_extension.cmake:78 (find_isa):
# find_isa Function invoked with incorrect arguments for function named:
# find_isa
"x86_64-darwin"
];
};
}
|