1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
|
{
lib,
buildPythonPackage,
fetchPypi,
setuptools,
setuptools-scm,
altair,
fastapi,
geopandas,
kaleido,
llmx,
matplotlib,
matplotlib-venn,
networkx,
numpy,
pandas,
plotly,
plotnine,
pydantic,
python-multipart,
scipy,
seaborn,
statsmodels,
typer,
uvicorn,
wordcloud,
peacasso,
basemap,
basemap-data-hires,
geopy,
}:
buildPythonPackage rec {
pname = "lida";
version = "0.0.14";
pyproject = true;
# No releases or tags are available in https://github.com/microsoft/lida
src = fetchPypi {
inherit pname version;
hash = "sha256-/az6hS8rNPxb8cDiz9SOyUBi/X48r9prJNFUnx1wPHM=";
};
patches = [
# The upstream places the data path under the py file's own directory.
# However, since `/nix/store` is read-only, we patch it to the user's home directory.
./rw_data.patch
];
build-system = [
setuptools
setuptools-scm
];
dependencies = [
altair
fastapi
geopandas
kaleido
llmx
matplotlib
matplotlib-venn
networkx
numpy
pandas
plotly
plotnine
pydantic
python-multipart
scipy
seaborn
statsmodels
typer
uvicorn
wordcloud
];
optional-dependencies = {
infographics = [
peacasso
];
tools = [
basemap
basemap-data-hires
geopy
];
transformers = [
llmx
];
web = [
fastapi
uvicorn
];
};
# require network
doCheck = false;
pythonImportsCheck = [ "lida" ];
meta = {
description = "Automatic Generation of Visualizations and Infographics using Large Language Models";
homepage = "https://github.com/microsoft/lida";
license = lib.licenses.mit;
maintainers = with lib.maintainers; [ moraxyc ];
mainProgram = "lida";
};
}
|