1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
|
/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
* All rights reserved.
* Copyright (c) 2024 The FreeBSD Foundation
*
* Portions of this software were developed by Olivier Certner
* <olce.freebsd@certner.fr> at Kumacom SARL under sponsorship from the FreeBSD
* Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#include "opt_sched.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/runq.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <machine/cpu.h>
/* Uncomment this to enable logging of critical_enter/exit. */
#if 0
#define KTR_CRITICAL KTR_SCHED
#else
#define KTR_CRITICAL 0
#endif
#ifdef FULL_PREEMPTION
#ifndef PREEMPTION
#error "The FULL_PREEMPTION option requires the PREEMPTION option"
#endif
#endif
/*
* kern.sched.preemption allows user space to determine if preemption support
* is compiled in or not. It is not currently a boot or runtime flag that
* can be changed.
*/
#ifdef PREEMPTION
static int kern_sched_preemption = 1;
#else
static int kern_sched_preemption = 0;
#endif
SYSCTL_INT(_kern_sched, OID_AUTO, preemption, CTLFLAG_RD,
&kern_sched_preemption, 0, "Kernel preemption enabled");
/*
* Support for scheduler stats exported via kern.sched.stats. All stats may
* be reset with kern.sched.stats.reset = 1. Stats may be defined elsewhere
* with SCHED_STAT_DEFINE().
*/
#ifdef SCHED_STATS
SYSCTL_NODE(_kern_sched, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"switch stats");
/* Switch reasons from mi_switch(9). */
DPCPU_DEFINE(long, sched_switch_stats[SWT_COUNT]);
SCHED_STAT_DEFINE_VAR(owepreempt,
&DPCPU_NAME(sched_switch_stats[SWT_OWEPREEMPT]), "");
SCHED_STAT_DEFINE_VAR(turnstile,
&DPCPU_NAME(sched_switch_stats[SWT_TURNSTILE]), "");
SCHED_STAT_DEFINE_VAR(sleepq,
&DPCPU_NAME(sched_switch_stats[SWT_SLEEPQ]), "");
SCHED_STAT_DEFINE_VAR(relinquish,
&DPCPU_NAME(sched_switch_stats[SWT_RELINQUISH]), "");
SCHED_STAT_DEFINE_VAR(needresched,
&DPCPU_NAME(sched_switch_stats[SWT_NEEDRESCHED]), "");
SCHED_STAT_DEFINE_VAR(idle,
&DPCPU_NAME(sched_switch_stats[SWT_IDLE]), "");
SCHED_STAT_DEFINE_VAR(iwait,
&DPCPU_NAME(sched_switch_stats[SWT_IWAIT]), "");
SCHED_STAT_DEFINE_VAR(suspend,
&DPCPU_NAME(sched_switch_stats[SWT_SUSPEND]), "");
SCHED_STAT_DEFINE_VAR(remotepreempt,
&DPCPU_NAME(sched_switch_stats[SWT_REMOTEPREEMPT]), "");
SCHED_STAT_DEFINE_VAR(remotewakeidle,
&DPCPU_NAME(sched_switch_stats[SWT_REMOTEWAKEIDLE]), "");
SCHED_STAT_DEFINE_VAR(bind,
&DPCPU_NAME(sched_switch_stats[SWT_BIND]), "");
static int
sysctl_stats_reset(SYSCTL_HANDLER_ARGS)
{
struct sysctl_oid *p;
uintptr_t counter;
int error;
int val;
int i;
val = 0;
error = sysctl_handle_int(oidp, &val, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (val == 0)
return (0);
/*
* Traverse the list of children of _kern_sched_stats and reset each
* to 0. Skip the reset entry.
*/
RB_FOREACH(p, sysctl_oid_list, oidp->oid_parent) {
if (p == oidp || p->oid_arg1 == NULL)
continue;
counter = (uintptr_t)p->oid_arg1;
CPU_FOREACH(i) {
*(long *)(dpcpu_off[i] + counter) = 0;
}
}
return (0);
}
SYSCTL_PROC(_kern_sched_stats, OID_AUTO, reset,
CTLTYPE_INT | CTLFLAG_WR | CTLFLAG_MPSAFE, NULL, 0,
sysctl_stats_reset, "I",
"Reset scheduler statistics");
#endif
/************************************************************************
* Functions that manipulate runnability from a thread perspective. *
************************************************************************/
/*
* Select the thread that will be run next.
*/
static __noinline struct thread *
choosethread_panic(struct thread *td)
{
/*
* If we are in panic, only allow system threads,
* plus the one we are running in, to be run.
*/
retry:
if (((td->td_proc->p_flag & P_SYSTEM) == 0 &&
(td->td_flags & TDF_INPANIC) == 0)) {
/* note that it is no longer on the run queue */
TD_SET_CAN_RUN(td);
td = sched_choose();
goto retry;
}
TD_SET_RUNNING(td);
return (td);
}
struct thread *
choosethread(void)
{
struct thread *td;
td = sched_choose();
if (KERNEL_PANICKED())
return (choosethread_panic(td));
TD_SET_RUNNING(td);
return (td);
}
/*
* Kernel thread preemption implementation. Critical sections mark
* regions of code in which preemptions are not allowed.
*
* It might seem a good idea to inline critical_enter() but, in order
* to prevent instructions reordering by the compiler, a __compiler_membar()
* would have to be used here (the same as sched_pin()). The performance
* penalty imposed by the membar could, then, produce slower code than
* the function call itself, for most cases.
*/
void
critical_enter_KBI(void)
{
#ifdef KTR
struct thread *td = curthread;
#endif
critical_enter();
CTR4(KTR_CRITICAL, "critical_enter by thread %p (%ld, %s) to %d", td,
(long)td->td_proc->p_pid, td->td_name, td->td_critnest);
}
void __noinline
critical_exit_preempt(void)
{
struct thread *td;
int flags;
/*
* If td_critnest is 0, it is possible that we are going to get
* preempted again before reaching the code below. This happens
* rarely and is harmless. However, this means td_owepreempt may
* now be unset.
*/
td = curthread;
if (td->td_critnest != 0)
return;
if (kdb_active)
return;
/*
* Microoptimization: we committed to switch,
* disable preemption in interrupt handlers
* while spinning for the thread lock.
*/
td->td_critnest = 1;
thread_lock(td);
td->td_critnest--;
flags = SW_INVOL | SW_PREEMPT;
if (TD_IS_IDLETHREAD(td))
flags |= SWT_IDLE;
else
flags |= SWT_OWEPREEMPT;
mi_switch(flags);
}
void
critical_exit_KBI(void)
{
#ifdef KTR
struct thread *td = curthread;
#endif
critical_exit();
CTR4(KTR_CRITICAL, "critical_exit by thread %p (%ld, %s) to %d", td,
(long)td->td_proc->p_pid, td->td_name, td->td_critnest);
}
/************************************************************************
* SYSTEM RUN QUEUE manipulations and tests *
************************************************************************/
_Static_assert(RQ_NQS <= 256,
"'td_rqindex' must be turned into a bigger unsigned type");
/* A macro instead of a function to get the proper calling function's name. */
#define CHECK_IDX(idx) ({ \
__typeof(idx) _idx __unused = (idx); \
KASSERT(0 <= _idx && _idx < RQ_NQS, \
("%s: %s out of range: %d", __func__, __STRING(idx), _idx)); \
})
/* Status words' individual bit manipulators' internals. */
typedef uintptr_t runq_sw_op(int idx, int sw_idx, rqsw_t sw_bit,
rqsw_t *swp);
static inline uintptr_t runq_sw_apply(struct runq *rq, int idx,
runq_sw_op *op);
static inline uintptr_t runq_sw_set_not_empty_op(int idx, int sw_idx,
rqsw_t sw_bit, rqsw_t *swp);
static inline uintptr_t runq_sw_set_empty_op(int idx, int sw_idx,
rqsw_t sw_bit, rqsw_t *swp);
static inline uintptr_t runq_sw_is_empty_op(int idx, int sw_idx,
rqsw_t sw_bit, rqsw_t *swp);
/* Status words' individual bit manipulators. */
static inline void runq_sw_set_not_empty(struct runq *rq, int idx);
static inline void runq_sw_set_empty(struct runq *rq, int idx);
static inline bool runq_sw_is_empty(struct runq *rq, int idx);
/*
* Initialize a run structure.
*/
void
runq_init(struct runq *rq)
{
int i;
bzero(rq, sizeof(*rq));
for (i = 0; i < RQ_NQS; i++)
TAILQ_INIT(&rq->rq_queues[i]);
}
/*
* Helper to implement functions operating on a particular status word bit.
*
* The operator is passed the initial 'idx', the corresponding status word index
* in 'rq_status' in 'sw_idx', a status word with only that bit set in 'sw_bit'
* and a pointer to the corresponding status word in 'swp'.
*/
static inline uintptr_t
runq_sw_apply(struct runq *rq, int idx, runq_sw_op *op)
{
rqsw_t *swp;
rqsw_t sw_bit;
int sw_idx;
CHECK_IDX(idx);
sw_idx = RQSW_IDX(idx);
sw_bit = RQSW_BIT(idx);
swp = &rq->rq_status.rq_sw[sw_idx];
return (op(idx, sw_idx, sw_bit, swp));
}
static inline uintptr_t
runq_sw_set_not_empty_op(int idx, int sw_idx, rqsw_t sw_bit, rqsw_t *swp)
{
rqsw_t old_sw __unused = *swp;
*swp |= sw_bit;
CTR4(KTR_RUNQ,
"runq_sw_set_not_empty: idx=%d sw_idx=%d "
"bits=" RQSW_PRI "->" RQSW_PRI,
idx, sw_idx, old_sw, *swp);
return (0);
}
/*
* Modify the status words to indicate that some queue is not empty.
*
* Sets the status bit corresponding to the queue at index 'idx'.
*/
static inline void
runq_sw_set_not_empty(struct runq *rq, int idx)
{
(void)runq_sw_apply(rq, idx, &runq_sw_set_not_empty_op);
}
static inline uintptr_t
runq_sw_set_empty_op(int idx, int sw_idx, rqsw_t sw_bit, rqsw_t *swp)
{
rqsw_t old_sw __unused = *swp;
*swp &= ~sw_bit;
CTR4(KTR_RUNQ,
"runq_sw_set_empty: idx=%d sw_idx=%d "
"bits=" RQSW_PRI "->" RQSW_PRI,
idx, sw_idx, old_sw, *swp);
return (0);
}
/*
* Modify the status words to indicate that some queue is empty.
*
* Clears the status bit corresponding to the queue at index 'idx'.
*/
static inline void
runq_sw_set_empty(struct runq *rq, int idx)
{
(void)runq_sw_apply(rq, idx, &runq_sw_set_empty_op);
}
static inline uintptr_t
runq_sw_is_empty_op(int idx, int sw_idx, rqsw_t sw_bit, rqsw_t *swp)
{
return ((*swp & sw_bit) == 0);
}
/*
* Returns whether the status words indicate that some queue is empty.
*/
static inline bool
runq_sw_is_empty(struct runq *rq, int idx)
{
return (runq_sw_apply(rq, idx, &runq_sw_is_empty_op));
}
/*
* Returns whether a particular queue is empty.
*/
bool
runq_is_queue_empty(struct runq *rq, int idx)
{
return (runq_sw_is_empty(rq, idx));
}
/*
* Add the thread to the queue specified by its priority, and set the
* corresponding status bit.
*/
void
runq_add(struct runq *rq, struct thread *td, int flags)
{
runq_add_idx(rq, td, RQ_PRI_TO_QUEUE_IDX(td->td_priority), flags);
}
void
runq_add_idx(struct runq *rq, struct thread *td, int idx, int flags)
{
struct rq_queue *rqq;
/*
* runq_sw_*() functions assert that 'idx' is non-negative and below
* 'RQ_NQS', and a static assert earlier in this file ensures that
* 'RQ_NQS' is no more than 256.
*/
td->td_rqindex = idx;
runq_sw_set_not_empty(rq, idx);
rqq = &rq->rq_queues[idx];
CTR4(KTR_RUNQ, "runq_add_idx: td=%p pri=%d idx=%d rqq=%p",
td, td->td_priority, idx, rqq);
if (flags & SRQ_PREEMPTED)
TAILQ_INSERT_HEAD(rqq, td, td_runq);
else
TAILQ_INSERT_TAIL(rqq, td, td_runq);
}
/*
* Remove the thread from the queue specified by its priority, and clear the
* corresponding status bit if the queue becomes empty.
*
* Returns whether the corresponding queue is empty after removal.
*/
bool
runq_remove(struct runq *rq, struct thread *td)
{
struct rq_queue *rqq;
int idx;
KASSERT(td->td_flags & TDF_INMEM, ("runq_remove: Thread swapped out"));
idx = td->td_rqindex;
CHECK_IDX(idx);
rqq = &rq->rq_queues[idx];
CTR4(KTR_RUNQ, "runq_remove: td=%p pri=%d idx=%d rqq=%p",
td, td->td_priority, idx, rqq);
TAILQ_REMOVE(rqq, td, td_runq);
if (TAILQ_EMPTY(rqq)) {
runq_sw_set_empty(rq, idx);
CTR1(KTR_RUNQ, "runq_remove: queue at idx=%d now empty", idx);
return (true);
}
return (false);
}
static inline int
runq_findq_status_word(struct runq *const rq, const int w_idx,
const rqsw_t w, runq_pred_t *const pred, void *const pred_data)
{
struct rq_queue *q;
rqsw_t tw = w;
int idx, b_idx;
while (tw != 0) {
b_idx = RQSW_BSF(tw);
idx = RQSW_TO_QUEUE_IDX(w_idx, b_idx);
q = &rq->rq_queues[idx];
KASSERT(!TAILQ_EMPTY(q),
("runq_findq(): No thread on non-empty queue with idx=%d",
idx));
if (pred(idx, q, pred_data))
return (idx);
tw &= ~RQSW_BIT(idx);
}
return (-1);
}
/*
* Find in the passed range (bounds included) the index of the first (i.e.,
* having lower index) non-empty queue that passes pred().
*
* Considered queues are those with index 'lvl_min' up to 'lvl_max' (bounds
* included). If no queue matches, returns -1.
*
* This is done by scanning the status words (a set bit indicates a non-empty
* queue) and calling pred() with corresponding queue indices. pred() must
* return whether the corresponding queue is accepted. It is passed private
* data through 'pred_data', which can be used both for extra input and output.
*/
int
runq_findq(struct runq *const rq, const int lvl_min, const int lvl_max,
runq_pred_t *const pred, void *const pred_data)
{
const rqsw_t (*const rqsw)[RQSW_NB] = &rq->rq_status.rq_sw;
rqsw_t w;
int i, last, idx;
CHECK_IDX(lvl_min);
CHECK_IDX(lvl_max);
KASSERT(lvl_min <= lvl_max,
("lvl_min: %d > lvl_max: %d!", lvl_min, lvl_max));
i = RQSW_IDX(lvl_min);
last = RQSW_IDX(lvl_max);
/* Clear bits for runqueues below 'lvl_min'. */
w = (*rqsw)[i] & ~(RQSW_BIT(lvl_min) - 1);
if (i == last)
goto last_mask;
idx = runq_findq_status_word(rq, i, w, pred, pred_data);
if (idx != -1)
goto return_idx;
for (++i; i < last; ++i) {
w = (*rqsw)[i];
idx = runq_findq_status_word(rq, i, w, pred, pred_data);
if (idx != -1)
goto return_idx;
}
MPASS(i == last);
w = (*rqsw)[i];
last_mask:
/* Clear bits for runqueues above 'lvl_max'. */
w &= (RQSW_BIT(lvl_max) - 1) | RQSW_BIT(lvl_max);
idx = runq_findq_status_word(rq, i, w, pred, pred_data);
if (idx != -1)
goto return_idx;
return (-1);
return_idx:
CTR4(KTR_RUNQ,
"runq_findq: bits=" RQSW_PRI "->" RQSW_PRI " i=%d idx=%d",
(*rqsw)[i], w, i, idx);
return (idx);
}
static bool
runq_first_thread_pred(const int idx, struct rq_queue *const q, void *const data)
{
struct thread **const tdp = data;
struct thread *const td = TAILQ_FIRST(q);
*tdp = td;
return (true);
}
/*
* Inline this function for the benefit of this file's internal uses, but make
* sure it has an external definition as it is exported.
*/
extern inline struct thread *
runq_first_thread_range(struct runq *const rq, const int lvl_min,
const int lvl_max)
{
struct thread *td = NULL;
(void)runq_findq(rq, lvl_min, lvl_max, runq_first_thread_pred, &td);
return (td);
}
static inline struct thread *
runq_first_thread(struct runq *const rq)
{
return (runq_first_thread_range(rq, 0, RQ_NQS - 1));
}
/*
* Return true if there are some processes of any priority on the run queue,
* false otherwise. Has no side effects. Supports racy lookups (required by
* 4BSD).
*/
bool
runq_not_empty(struct runq *rq)
{
const rqsw_t (*const rqsw)[RQSW_NB] = &rq->rq_status.rq_sw;
int sw_idx;
for (sw_idx = 0; sw_idx < RQSW_NB; ++sw_idx) {
const rqsw_t w = (*rqsw)[sw_idx];
if (w != 0) {
CTR3(KTR_RUNQ, "runq_not_empty: not empty; "
"rq=%p, sw_idx=%d, bits=" RQSW_PRI,
rq, sw_idx, w);
return (true);
}
}
CTR1(KTR_RUNQ, "runq_not_empty: empty; rq=%p", rq);
return (false);
}
/*
* Find the highest priority process on the run queue.
*/
struct thread *
runq_choose(struct runq *rq)
{
struct thread *td;
td = runq_first_thread(rq);
if (td != NULL) {
CTR2(KTR_RUNQ, "runq_choose: idx=%d td=%p", td->td_rqindex, td);
return (td);
}
CTR0(KTR_RUNQ, "runq_choose: idlethread");
return (NULL);
}
struct runq_fuzz_pred_data {
int fuzz;
struct thread *td;
};
static bool
runq_fuzz_pred(const int idx, struct rq_queue *const q, void *const data)
{
struct runq_fuzz_pred_data *const d = data;
const int fuzz = d->fuzz;
struct thread *td;
td = TAILQ_FIRST(q);
if (fuzz > 1) {
/*
* In the first couple of entries, check if
* there is one for our CPU as a preference.
*/
struct thread *td2 = td;
int count = fuzz;
int cpu = PCPU_GET(cpuid);
while (count-- != 0 && td2 != NULL) {
if (td2->td_lastcpu == cpu) {
td = td2;
break;
}
td2 = TAILQ_NEXT(td2, td_runq);
}
}
d->td = td;
return (true);
}
/*
* Find the highest priority process on the run queue.
*/
struct thread *
runq_choose_fuzz(struct runq *rq, int fuzz)
{
struct runq_fuzz_pred_data data = {
.fuzz = fuzz,
.td = NULL
};
int idx;
idx = runq_findq(rq, 0, RQ_NQS - 1, runq_fuzz_pred, &data);
if (idx != -1) {
MPASS(data.td != NULL);
CTR2(KTR_RUNQ, "runq_choose_fuzz: idx=%d td=%p", idx, data.td);
return (data.td);
}
MPASS(data.td == NULL);
CTR0(KTR_RUNQ, "runq_choose_fuzz: idlethread");
return (NULL);
}
|