1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
|
/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2016 Oleksandr Tymoshenko <gonzo@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "opt_acpi.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/proc.h>
#include <sys/rman.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <dev/spibus/spi.h>
#include <dev/spibus/spibusvar.h>
#include <dev/intel/spi.h>
/**
* Macros for driver mutex locking
*/
#define INTELSPI_IN_POLLING_MODE() (SCHEDULER_STOPPED() || kdb_active)
#define INTELSPI_LOCK(_sc) do { \
if(!INTELSPI_IN_POLLING_MODE()) \
mtx_lock(&(_sc)->sc_mtx); \
} while (0)
#define INTELSPI_UNLOCK(_sc) do { \
if(!INTELSPI_IN_POLLING_MODE()) \
mtx_unlock(&(_sc)->sc_mtx); \
} while (0)
#define INTELSPI_LOCK_INIT(_sc) \
mtx_init(&_sc->sc_mtx, device_get_nameunit((_sc)->sc_dev), \
"intelspi", MTX_DEF)
#define INTELSPI_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->sc_mtx)
#define INTELSPI_ASSERT_LOCKED(_sc) do { \
if(!INTELSPI_IN_POLLING_MODE()) \
mtx_assert(&(_sc)->sc_mtx, MA_OWNED); \
} while (0)
#define INTELSPI_ASSERT_UNLOCKED(_sc) do { \
if(!INTELSPI_IN_POLLING_MODE()) \
mtx_assert(&(_sc)->sc_mtx, MA_NOTOWNED);\
} while (0)
#define INTELSPI_WRITE(_sc, _off, _val) \
bus_write_4((_sc)->sc_mem_res, (_off), (_val))
#define INTELSPI_READ(_sc, _off) \
bus_read_4((_sc)->sc_mem_res, (_off))
#define INTELSPI_BUSY 0x1
#define TX_FIFO_THRESHOLD 2
#define RX_FIFO_THRESHOLD 2
#define CLOCK_DIV_10MHZ 5
#define DATA_SIZE_8BITS 8
#define MAX_CLOCK_RATE 50000000
#define CS_LOW 0
#define CS_HIGH 1
#define INTELSPI_SSPREG_SSCR0 0x0
#define SSCR0_SCR(n) ((((n) - 1) & 0xfff) << 8)
#define SSCR0_SSE (1 << 7)
#define SSCR0_FRF_SPI (0 << 4)
#define SSCR0_DSS(n) (((n) - 1) << 0)
#define INTELSPI_SSPREG_SSCR1 0x4
#define SSCR1_TINTE (1 << 19)
#define SSCR1_RFT(n) (((n) - 1) << 10)
#define SSCR1_RFT_MASK (0xf << 10)
#define SSCR1_TFT(n) (((n) - 1) << 6)
#define SSCR1_SPI_SPH (1 << 4)
#define SSCR1_SPI_SPO (1 << 3)
#define SSCR1_MODE_MASK (SSCR1_SPI_SPO | SSCR1_SPI_SPH)
#define SSCR1_TIE (1 << 1)
#define SSCR1_RIE (1 << 0)
#define INTELSPI_SSPREG_SSSR 0x8
#define SSSR_RFL_MASK (0xf << 12)
#define SSSR_TFL_MASK (0xf << 8)
#define SSSR_RNE (1 << 3)
#define SSSR_TNF (1 << 2)
#define INTELSPI_SSPREG_SSITR 0xC
#define INTELSPI_SSPREG_SSDR 0x10
#define INTELSPI_SSPREG_SSTO 0x28
#define INTELSPI_SSPREG_SSPSP 0x2C
#define INTELSPI_SSPREG_SSTSA 0x30
#define INTELSPI_SSPREG_SSRSA 0x34
#define INTELSPI_SSPREG_SSTSS 0x38
#define INTELSPI_SSPREG_SSACD 0x3C
#define INTELSPI_SSPREG_ITF 0x40
#define INTELSPI_SSPREG_SITF 0x44
#define INTELSPI_SSPREG_SIRF 0x48
#define SPI_CS_CTRL(sc) \
(intelspi_infos[sc->sc_vers].reg_lpss_base + \
intelspi_infos[sc->sc_vers].reg_cs_ctrl)
#define SPI_CS_CTRL_CS_MASK (3)
#define SPI_CS_CTRL_SW_MODE (1 << 0)
#define SPI_CS_CTRL_HW_MODE (1 << 0)
#define SPI_CS_CTRL_CS_HIGH (1 << 1)
#define INTELSPI_RESETS 0x204
#define INTELSPI_RESET_HOST (1 << 0) | (1 << 1)
#define INTELSPI_RESET_DMA (1 << 2)
/* Same order as intelspi_vers */
static const struct intelspi_info {
uint32_t reg_lpss_base;
uint32_t reg_cs_ctrl;
} intelspi_infos[] = {
[SPI_BAYTRAIL] = {
.reg_lpss_base = 0x400,
.reg_cs_ctrl = 0x18,
},
[SPI_BRASWELL] = {
.reg_lpss_base = 0x400,
.reg_cs_ctrl = 0x18,
},
[SPI_LYNXPOINT] = {
.reg_lpss_base = 0x800,
.reg_cs_ctrl = 0x18,
},
[SPI_SUNRISEPOINT] = {
.reg_lpss_base = 0x200,
.reg_cs_ctrl = 0x24,
},
};
static void intelspi_intr(void *);
static int
intelspi_txfifo_full(struct intelspi_softc *sc)
{
uint32_t sssr;
INTELSPI_ASSERT_LOCKED(sc);
sssr = INTELSPI_READ(sc, INTELSPI_SSPREG_SSSR);
if (sssr & SSSR_TNF)
return (0);
return (1);
}
static int
intelspi_rxfifo_empty(struct intelspi_softc *sc)
{
uint32_t sssr;
INTELSPI_ASSERT_LOCKED(sc);
sssr = INTELSPI_READ(sc, INTELSPI_SSPREG_SSSR);
if (sssr & SSSR_RNE)
return (0);
else
return (1);
}
static void
intelspi_fill_tx_fifo(struct intelspi_softc *sc)
{
struct spi_command *cmd;
uint32_t written;
uint8_t *data;
INTELSPI_ASSERT_LOCKED(sc);
cmd = sc->sc_cmd;
while (sc->sc_written < sc->sc_len &&
!intelspi_txfifo_full(sc)) {
data = (uint8_t *)cmd->tx_cmd;
written = sc->sc_written++;
if (written >= cmd->tx_cmd_sz) {
data = (uint8_t *)cmd->tx_data;
written -= cmd->tx_cmd_sz;
}
INTELSPI_WRITE(sc, INTELSPI_SSPREG_SSDR, data[written]);
}
}
static void
intelspi_drain_rx_fifo(struct intelspi_softc *sc)
{
struct spi_command *cmd;
uint32_t read;
uint8_t *data;
INTELSPI_ASSERT_LOCKED(sc);
cmd = sc->sc_cmd;
while (sc->sc_read < sc->sc_len &&
!intelspi_rxfifo_empty(sc)) {
data = (uint8_t *)cmd->rx_cmd;
read = sc->sc_read++;
if (read >= cmd->rx_cmd_sz) {
data = (uint8_t *)cmd->rx_data;
read -= cmd->rx_cmd_sz;
}
data[read] = INTELSPI_READ(sc, INTELSPI_SSPREG_SSDR) & 0xff;
}
}
static int
intelspi_transaction_done(struct intelspi_softc *sc)
{
int txfifo_empty;
uint32_t sssr;
INTELSPI_ASSERT_LOCKED(sc);
if (sc->sc_written != sc->sc_len ||
sc->sc_read != sc->sc_len)
return (0);
sssr = INTELSPI_READ(sc, INTELSPI_SSPREG_SSSR);
txfifo_empty = ((sssr & SSSR_TFL_MASK) == 0) &&
(sssr & SSSR_TNF);
if (txfifo_empty && !(sssr & SSSR_RNE))
return (1);
return (0);
}
static int
intelspi_transact(struct intelspi_softc *sc)
{
INTELSPI_ASSERT_LOCKED(sc);
/* TX - Fill up the FIFO. */
intelspi_fill_tx_fifo(sc);
/* RX - Drain the FIFO. */
intelspi_drain_rx_fifo(sc);
/* Check for end of transfer. */
return intelspi_transaction_done(sc);
}
static void
intelspi_intr(void *arg)
{
struct intelspi_softc *sc;
uint32_t reg;
sc = (struct intelspi_softc *)arg;
INTELSPI_LOCK(sc);
if ((sc->sc_flags & INTELSPI_BUSY) == 0) {
INTELSPI_UNLOCK(sc);
return;
}
/* Check if SSP if off */
reg = INTELSPI_READ(sc, INTELSPI_SSPREG_SSSR);
if (reg == 0xffffffffU) {
INTELSPI_UNLOCK(sc);
return;
}
/* Check for end of transfer. */
if (intelspi_transact(sc)) {
/* Disable interrupts */
reg = INTELSPI_READ(sc, INTELSPI_SSPREG_SSCR1);
reg &= ~(SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE);
INTELSPI_WRITE(sc, INTELSPI_SSPREG_SSCR1, reg);
wakeup(sc->sc_dev);
}
INTELSPI_UNLOCK(sc);
}
static void
intelspi_init(struct intelspi_softc *sc)
{
uint32_t reg;
INTELSPI_WRITE(sc, INTELSPI_SSPREG_SSCR0, 0);
/* Manual CS control */
reg = INTELSPI_READ(sc, SPI_CS_CTRL(sc));
reg &= ~(SPI_CS_CTRL_CS_MASK);
reg |= (SPI_CS_CTRL_SW_MODE | SPI_CS_CTRL_CS_HIGH);
INTELSPI_WRITE(sc, SPI_CS_CTRL(sc), reg);
/* Set TX/RX FIFO IRQ threshold levels */
reg = SSCR1_TFT(TX_FIFO_THRESHOLD) | SSCR1_RFT(RX_FIFO_THRESHOLD);
INTELSPI_WRITE(sc, INTELSPI_SSPREG_SSCR1, reg);
reg = SSCR0_SCR(CLOCK_DIV_10MHZ);
/* Put SSP in SPI mode */
reg |= SSCR0_FRF_SPI;
/* Data size */
reg |= SSCR0_DSS(DATA_SIZE_8BITS);
/* Enable SSP */
reg |= SSCR0_SSE;
INTELSPI_WRITE(sc, INTELSPI_SSPREG_SSCR0, reg);
}
static void
intelspi_set_cs(struct intelspi_softc *sc, int level)
{
uint32_t reg;
reg = INTELSPI_READ(sc, SPI_CS_CTRL(sc));
reg &= ~(SPI_CS_CTRL_CS_MASK);
reg |= SPI_CS_CTRL_SW_MODE;
if (level == CS_HIGH)
reg |= SPI_CS_CTRL_CS_HIGH;
INTELSPI_WRITE(sc, SPI_CS_CTRL(sc), reg);
}
int
intelspi_transfer(device_t dev, device_t child, struct spi_command *cmd)
{
struct intelspi_softc *sc;
int err, poll_limit;
uint32_t sscr0, sscr1, mode, clock, cs_delay;
bool restart = false;
sc = device_get_softc(dev);
err = 0;
KASSERT(cmd->tx_cmd_sz == cmd->rx_cmd_sz,
("TX/RX command sizes should be equal"));
KASSERT(cmd->tx_data_sz == cmd->rx_data_sz,
("TX/RX data sizes should be equal"));
INTELSPI_LOCK(sc);
if (!INTELSPI_IN_POLLING_MODE()) {
/* If the controller is in use wait until it is available. */
while (sc->sc_flags & INTELSPI_BUSY) {
if ((cmd->flags & SPI_FLAG_NO_SLEEP) != 0) {
INTELSPI_UNLOCK(sc);
return (EBUSY);
}
err = mtx_sleep(dev, &sc->sc_mtx, 0, "intelspi", 0);
if (err == EINTR) {
INTELSPI_UNLOCK(sc);
return (err);
}
}
} else {
/*
* Now we are in the middle of other transfer. Try to reset
* controller state to get predictable context.
*/
if ((sc->sc_flags & INTELSPI_BUSY) != 0)
intelspi_init(sc);
}
/* Now we have control over SPI controller. */
sc->sc_flags = INTELSPI_BUSY;
/* Configure the clock rate and SPI mode. */
spibus_get_clock(child, &clock);
spibus_get_mode(child, &mode);
if (clock != sc->sc_clock || mode != sc->sc_mode) {
sscr0 = INTELSPI_READ(sc, INTELSPI_SSPREG_SSCR0);
sscr0 &= ~SSCR0_SSE;
INTELSPI_WRITE(sc, INTELSPI_SSPREG_SSCR0, sscr0);
restart = true;
}
if (clock != sc->sc_clock) {
sscr0 = INTELSPI_READ(sc, INTELSPI_SSPREG_SSCR0);
sscr0 &= ~SSCR0_SCR(0xfff);
if (clock == 0)
sscr0 |= SSCR0_SCR(CLOCK_DIV_10MHZ);
else
sscr0 |= SSCR0_SCR(howmany(MAX_CLOCK_RATE, min(MAX_CLOCK_RATE, clock)));
INTELSPI_WRITE(sc, INTELSPI_SSPREG_SSCR0, sscr0);
sc->sc_clock = clock;
}
if (mode != sc->sc_mode) {
sscr1 = INTELSPI_READ(sc, INTELSPI_SSPREG_SSCR1);
sscr1 &= ~SSCR1_MODE_MASK;
if (mode & SPIBUS_MODE_CPHA)
sscr1 |= SSCR1_SPI_SPH;
if (mode & SPIBUS_MODE_CPOL)
sscr1 |= SSCR1_SPI_SPO;
INTELSPI_WRITE(sc, INTELSPI_SSPREG_SSCR1, sscr1);
sc->sc_mode = mode;
}
if (restart) {
sscr0 = INTELSPI_READ(sc, INTELSPI_SSPREG_SSCR0);
sscr0 |= SSCR0_SSE;
INTELSPI_WRITE(sc, INTELSPI_SSPREG_SSCR0, sscr0);
}
/* Save a pointer to the SPI command. */
sc->sc_cmd = cmd;
sc->sc_read = 0;
sc->sc_written = 0;
sc->sc_len = cmd->tx_cmd_sz + cmd->tx_data_sz;
/* Enable CS */
intelspi_set_cs(sc, CS_LOW);
/* Wait the CS delay */
spibus_get_cs_delay(child, &cs_delay);
DELAY(cs_delay);
/* Transfer as much as possible to FIFOs */
if ((cmd->flags & SPI_FLAG_NO_SLEEP) != 0 ||
INTELSPI_IN_POLLING_MODE() || cold) {
/* We cannot wait with mtx_sleep if we're called from e.g. an ithread */
poll_limit = 2000;
while (!intelspi_transact(sc) && poll_limit-- > 0)
DELAY(1000);
if (poll_limit == 0) {
device_printf(dev, "polling was stuck, transaction not finished\n");
err = EIO;
}
} else {
if (!intelspi_transact(sc)) {
/* If FIFO is not large enough - enable interrupts */
sscr1 = INTELSPI_READ(sc, INTELSPI_SSPREG_SSCR1);
sscr1 |= (SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE);
INTELSPI_WRITE(sc, INTELSPI_SSPREG_SSCR1, sscr1);
/* and wait for transaction to complete */
err = mtx_sleep(dev, &sc->sc_mtx, 0, "intelspi", hz * 2);
}
}
/* De-assert CS */
if ((cmd->flags & SPI_FLAG_KEEP_CS) == 0)
intelspi_set_cs(sc, CS_HIGH);
/* Clear transaction details */
sc->sc_cmd = NULL;
sc->sc_read = 0;
sc->sc_written = 0;
sc->sc_len = 0;
/* Make sure the SPI engine and interrupts are disabled. */
sscr1 = INTELSPI_READ(sc, INTELSPI_SSPREG_SSCR1);
sscr1 &= ~(SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE);
INTELSPI_WRITE(sc, INTELSPI_SSPREG_SSCR1, sscr1);
/* Release the controller and wakeup the next thread waiting for it. */
sc->sc_flags = 0;
if (!INTELSPI_IN_POLLING_MODE())
wakeup_one(dev);
INTELSPI_UNLOCK(sc);
/*
* Check for transfer timeout. The SPI controller doesn't
* return errors.
*/
if (err == EWOULDBLOCK) {
device_printf(sc->sc_dev, "transfer timeout\n");
err = EIO;
}
return (err);
}
int
intelspi_attach(device_t dev)
{
struct intelspi_softc *sc;
sc = device_get_softc(dev);
sc->sc_dev = dev;
INTELSPI_LOCK_INIT(sc);
sc->sc_mem_res = bus_alloc_resource_any(sc->sc_dev,
SYS_RES_MEMORY, &sc->sc_mem_rid, RF_ACTIVE);
if (sc->sc_mem_res == NULL) {
device_printf(dev, "can't allocate memory resource\n");
goto error;
}
/* Release LPSS reset */
if (sc->sc_vers == SPI_SUNRISEPOINT)
INTELSPI_WRITE(sc, INTELSPI_RESETS,
(INTELSPI_RESET_HOST | INTELSPI_RESET_DMA));
sc->sc_irq_res = bus_alloc_resource_any(sc->sc_dev,
SYS_RES_IRQ, &sc->sc_irq_rid, RF_ACTIVE | RF_SHAREABLE);
if (sc->sc_irq_res == NULL) {
device_printf(dev, "can't allocate IRQ resource\n");
goto error;
}
/* Hook up our interrupt handler. */
if (bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_MISC | INTR_MPSAFE,
NULL, intelspi_intr, sc, &sc->sc_irq_ih)) {
device_printf(dev, "cannot setup the interrupt handler\n");
goto error;
}
intelspi_init(sc);
device_add_child(dev, "spibus", DEVICE_UNIT_ANY);
bus_delayed_attach_children(dev);
return (0);
error:
INTELSPI_LOCK_DESTROY(sc);
if (sc->sc_mem_res != NULL)
bus_release_resource(dev, SYS_RES_MEMORY,
sc->sc_mem_rid, sc->sc_mem_res);
if (sc->sc_irq_res != NULL)
bus_release_resource(dev, SYS_RES_IRQ,
sc->sc_irq_rid, sc->sc_irq_res);
return (ENXIO);
}
int
intelspi_detach(device_t dev)
{
struct intelspi_softc *sc;
int error;
sc = device_get_softc(dev);
error = bus_generic_detach(dev);
if (error != 0)
return (error);
INTELSPI_LOCK_DESTROY(sc);
if (sc->sc_irq_ih)
bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_irq_ih);
if (sc->sc_mem_res != NULL)
bus_release_resource(dev, SYS_RES_MEMORY,
sc->sc_mem_rid, sc->sc_mem_res);
if (sc->sc_irq_res != NULL)
bus_release_resource(dev, SYS_RES_IRQ,
sc->sc_irq_rid, sc->sc_irq_res);
return (0);
}
int
intelspi_suspend(device_t dev)
{
struct intelspi_softc *sc;
int err, i;
sc = device_get_softc(dev);
err = bus_generic_suspend(dev);
if (err)
return (err);
for (i = 0; i < 9; i++) {
unsigned long offset = i * sizeof(uint32_t);
sc->sc_regs[i] = INTELSPI_READ(sc,
intelspi_infos[sc->sc_vers].reg_lpss_base + offset);
}
/* Shutdown just in case */
INTELSPI_WRITE(sc, INTELSPI_SSPREG_SSCR0, 0);
return (0);
}
int
intelspi_resume(device_t dev)
{
struct intelspi_softc *sc;
int i;
sc = device_get_softc(dev);
for (i = 0; i < 9; i++) {
unsigned long offset = i * sizeof(uint32_t);
INTELSPI_WRITE(sc,
intelspi_infos[sc->sc_vers].reg_lpss_base + offset,
sc->sc_regs[i]);
}
intelspi_init(sc);
/* Ensure the next transfer would reconfigure these */
sc->sc_clock = 0;
sc->sc_mode = 0;
return (bus_generic_resume(dev));
}
|