summaryrefslogtreecommitdiff
path: root/crypto/libecc/src/sig/bign_common.c
blob: c44e465f0240408b0e913abc3317cf6d6ce3e243 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
/*
 *  Copyright (C) 2022 - This file is part of libecc project
 *
 *  Authors:
 *      Ryad BENADJILA <ryadbenadjila@gmail.com>
 *      Arnaud EBALARD <arnaud.ebalard@ssi.gouv.fr>
 *
 *  This software is licensed under a dual BSD and GPL v2 license.
 *  See LICENSE file at the root folder of the project.
 */
#include <libecc/lib_ecc_config.h>
#if defined(WITH_SIG_BIGN) || defined(WITH_SIG_DBIGN)

#include <libecc/nn/nn_rand.h>
#include <libecc/nn/nn_mul_public.h>
#include <libecc/nn/nn_logical.h>

#include <libecc/sig/sig_algs_internal.h>
#include <libecc/sig/ec_key.h>
#include <libecc/utils/utils.h>
#ifdef VERBOSE_INNER_VALUES
#define EC_SIG_ALG "BIGN"
#endif
#include <libecc/utils/dbg_sig.h>

/*
 * This is an implementation of the BIGN signature algorithm as
 * described in the STB 34.101.45 standard
 * (http://apmi.bsu.by/assets/files/std/bign-spec29.pdf).
 *
 * The BIGN signature is a variation on the Shnorr signature scheme.
 *
 * An english high-level (less formal) description and rationale can be found
 * in the IETF archive:
 *   https://mailarchive.ietf.org/arch/msg/cfrg/pI92HSRjMBg50NVEz32L5RciVBk/
 *
 * BIGN comes in two flavors: deterministic and non-deterministic. The current
 * file implements the two.
 *
 * In this implementation, we are *on purpose* more lax than the STB standard regarding
 * the so called "internal"/"external" hash function sizes and the order size:
 *   - We accept order sizes that might be different than twice the internal hash
 *   function (HASH-BELT truncated) and the size of the external hash function.
 *   - We accept security levels that might be different from {128, 192, 256}.
 *
 * If we strictly conform to STB 34.101.45, only orders of size exactly twice the
 * internal hash function length are accepted, and only external hash functions of size
 * of the order are accepted. Also only security levels of 128, 192 or 256 bits
 * are accepted.
 *
 * Being more lax on these parameters allows to be compatible with more hash
 * functions and curves.
 *
 * Finally, although the IETF archive in english leaves the "internal" hash functions
 * as configurable (wrt size constraints), the STB 34.101.45 standard fixes the BELT hash
 * function (standardized in STB 34.101.31) as the one to be used. The current file follows
 * this mandatory requirement and uses BELT as the only possible internal hash function
 * while the external one is configurable.
 *
 */

/* NOTE: BIGN uses per its standard the BELT-HASH hash function as its "internal"
 * hash function, as well as the BELT encryption block cipher during the deterministic
 * computation of the nonce for the deterministic version of BIGN.
 * Hence the sanity check below.
 */
#if !defined(WITH_HASH_BELT_HASH)
#error "BIGN and DBIGN need BELT-HASH, please activate it!"
#endif


/* Reverses the endiannes of a buffer in place */
ATTRIBUTE_WARN_UNUSED_RET static inline int _reverse_endianness(u8 *buf, u16 buf_size)
{
	u16 i;
	u8 tmp;
	int ret;

	MUST_HAVE((buf != NULL), ret, err);

	if(buf_size > 1){
		for(i = 0; i < (buf_size / 2); i++){
			tmp = buf[i];
			buf[i] = buf[buf_size - 1 - i];
			buf[buf_size - 1 - i] = tmp;
		}
	}

	ret = 0;
err:
	return ret;
}

/* The additional data for bign are specific. We provide
 * helpers to extract them from an adata pointer.
 */
int bign_get_oid_from_adata(const u8 *adata, u16 adata_len, const u8 **oid_ptr, u16 *oid_len)
{
	int ret;
	u16 t_len;

	MUST_HAVE((adata != NULL) && (oid_ptr != NULL) && (oid_len != NULL), ret, err);
	MUST_HAVE((adata_len >= 4), ret, err);

	(*oid_len) = (u16)(((u16)adata[0] << 8) | adata[1]);
	t_len = (u16)(((u16)adata[2] << 8) | adata[3]);
	/* Check overflow */
	MUST_HAVE(((*oid_len) + t_len) >= (t_len), ret, err);
	MUST_HAVE(((*oid_len) + t_len) <= (adata_len - 4), ret, err);
	(*oid_ptr) = &adata[4];

	ret = 0;
err:
	if(ret && (oid_ptr != NULL)){
		(*oid_ptr) = NULL;
	}
	if(ret && (oid_len != NULL)){
		(*oid_len) = 0;
	}
	return ret;
}

int bign_get_t_from_adata(const u8 *adata, u16 adata_len, const u8 **t_ptr, u16 *t_len)
{
	int ret;
	u16 oid_len;

	MUST_HAVE((adata != NULL) && (t_ptr != NULL) && (t_len != NULL), ret, err);
	MUST_HAVE((adata_len >= 4), ret, err);

	oid_len = (u16)(((u16)adata[0] << 8) | adata[1]);
	(*t_len) = (u16)(((u16)adata[2] << 8) | adata[3]);
	/* Check overflow */
	MUST_HAVE((oid_len + (*t_len)) >= (oid_len), ret, err);
	MUST_HAVE((oid_len + (*t_len)) <= (adata_len - 4), ret, err);
	(*t_ptr) = &adata[4 + oid_len];

	ret = 0;
err:
	if(ret && (t_ptr != NULL)){
		(*t_ptr) = NULL;
	}
	if(ret && (t_len != NULL)){
		(*t_len) = 0;
	}
	return ret;
}

int bign_set_adata(u8 *adata, u16 adata_len, const u8 *oid, u16 oid_len, const u8 *t, u16 t_len)
{
	int ret;

	MUST_HAVE((adata != NULL), ret, err);

	MUST_HAVE((oid != NULL) || (oid_len == 0), ret, err);
	MUST_HAVE((t != NULL) || (t_len == 0), ret, err);
	MUST_HAVE((adata_len >= 4), ret, err);
	/* Check overflow */
	MUST_HAVE(((oid_len + t_len) >= oid_len), ret, err);
	MUST_HAVE(((adata_len - 4) >= (oid_len + t_len)), ret, err);

	if(oid != NULL){
		adata[0] = (u8)(oid_len >> 8);
		adata[1] = (u8)(oid_len & 0xff);
		ret = local_memcpy(&adata[4], oid, oid_len); EG(ret, err);
	}
	else{
		adata[0] = adata[1] = 0;
	}
	if(t != NULL){
		adata[2] = (u8)(t_len >> 8);
		adata[3] = (u8)(t_len & 0xff);
		ret = local_memcpy(&adata[4 + oid_len], t, t_len); EG(ret, err);

	}
	else{
		adata[2] = adata[3] = 0;
	}

	ret = 0;
err:
	return ret;
}

#if defined(WITH_SIG_DBIGN)
/*
 * Deterministic nonce generation function for deterministic BIGN, as
 * described in STB 34.101.45 6.3.3.
 *
 * NOTE: Deterministic nonce generation for BIGN is useful against attackers
 * in contexts where only poor RNG/entropy are available, or when nonce bits
 * leaking can be possible through side-channel attacks.
 * However, in contexts where fault attacks are easy to mount, deterministic
 * BIGN can bring more security risks than regular BIGN.
 *
 * Depending on the context where you use the library, choose carefully if
 * you want to use the deterministic version or not.
 *
 */
ATTRIBUTE_WARN_UNUSED_RET static int __bign_determinitic_nonce(nn_t k, nn_src_t q, bitcnt_t q_bit_len,
							       nn_src_t x, const u8 *adata, u16 adata_len,
							       const u8 *h, u8 hlen)
{
	int ret, cmp, iszero;
	u8 theta[BELT_HASH_DIGEST_SIZE];
	u8 FE2OS_D[LOCAL_MAX(BYTECEIL(CURVES_MAX_Q_BIT_LEN), 2 * BELT_HASH_DIGEST_SIZE)];
	u8 r[((MAX_DIGEST_SIZE / BELT_BLOCK_LEN) * BELT_BLOCK_LEN) + (2 * BELT_BLOCK_LEN)];
	u8 r_bar[((MAX_DIGEST_SIZE / BELT_BLOCK_LEN) * BELT_BLOCK_LEN) + (2 * BELT_BLOCK_LEN)];
	u8 q_len, l;
	unsigned int j, z, n;
	u32 i;
	u16 r_bar_len;

	belt_hash_context belt_hash_ctx;
	const u8 *oid_ptr = NULL;
	const u8 *t_ptr = NULL;
	u16 oid_len = 0, t_len = 0;

	MUST_HAVE((adata != NULL) && (h != NULL), ret, err);
	ret = nn_check_initialized(q); EG(ret, err);
	ret = nn_check_initialized(x); EG(ret, err);

	ret = local_memset(theta, 0, sizeof(theta)); EG(ret, err);
	ret = local_memset(FE2OS_D, 0, sizeof(FE2OS_D)); EG(ret, err);
	ret = local_memset(r_bar, 0, sizeof(r_bar)); EG(ret, err);

	q_len = (u8)BYTECEIL(q_bit_len);

	/* Compute l depending on the order */
	l = (u8)BIGN_S0_LEN(q_bit_len);

	/* Extract oid and t from the additional data */
	ret = bign_get_oid_from_adata(adata, adata_len, &oid_ptr, &oid_len); EG(ret, err);
	ret = bign_get_t_from_adata(adata, adata_len, &t_ptr, &t_len); EG(ret, err);

	ret = belt_hash_init(&belt_hash_ctx); EG(ret, err);
	ret = belt_hash_update(&belt_hash_ctx, oid_ptr, oid_len); EG(ret, err);

	/* Put the private key in a string <d>2*l */
	ret = local_memset(FE2OS_D, 0, sizeof(FE2OS_D)); EG(ret, err);
	ret = nn_export_to_buf(&FE2OS_D[0], q_len, x); EG(ret, err);
	ret = _reverse_endianness(&FE2OS_D[0], q_len); EG(ret, err);
	/* Only hash the 2*l bytes of d */
	ret = belt_hash_update(&belt_hash_ctx, &FE2OS_D[0], (u32)(2*l)); EG(ret, err);

	ret = belt_hash_update(&belt_hash_ctx, t_ptr, t_len); EG(ret, err);

	ret = belt_hash_final(&belt_hash_ctx, theta); EG(ret, err);

	dbg_buf_print("theta", theta, BELT_HASH_DIGEST_SIZE);

	/* n is the number of 128 bits blocks in H */
	n = (hlen / BELT_BLOCK_LEN);

	MUST_HAVE((hlen <= sizeof(r)), ret, err);
	ret = local_memset(r, 0, sizeof(r));
	ret = local_memcpy(r, h, hlen); EG(ret, err);
	/* If we have less than two blocks for the input hash size, we use zero
	 * padding to achieve at least two blocks.
	 * NOTE: this is not in the standard but allows to be compatible with small
	 * size hash functions.
	 */
	if(n <= 1){
		n = 2;
	}

	/* Now iterate until the nonce is computed in [1, q-1]
	 * NOTE: we are ensured here that n >= 2, which allows us to
	 * index (n-1) and (n-2) blocks in r.
	 */
	i = (u32)1;

	while(1){
		u8 s[BELT_BLOCK_LEN];
		u8 i_block[BELT_BLOCK_LEN];
		ret = local_memset(s, 0, sizeof(s)); EG(ret, err);

		/* Put the xor of all n-1 elements in s */
		for(j = 0; j < (n - 1); j++){
			for(z = 0; z < BELT_BLOCK_LEN; z++){
				s[z] ^= r[(BELT_BLOCK_LEN * j) + z];
			}
		}
		/* Move elements left for the first n-2 elements */
		ret = local_memcpy(&r[0], &r[BELT_BLOCK_LEN], (n - 2) * BELT_BLOCK_LEN); EG(ret, err);

		/* r_n-1 = belt-block(s, theta) ^ r_n ^ <i>128 */
		ret = local_memset(i_block, 0, sizeof(i_block)); EG(ret, err);
		PUT_UINT32_LE(i, i_block, 0);
		belt_encrypt(s, &r[(n - 2) * BELT_BLOCK_LEN], theta);
		for(z = 0; z < BELT_BLOCK_LEN; z++){
			r[((n - 2) * BELT_BLOCK_LEN) + z] ^= (r[((n - 1) * BELT_BLOCK_LEN) + z] ^ i_block[z]);
		}

		/* r_n = s */
		ret = local_memcpy(&r[(n - 1) * BELT_BLOCK_LEN], s, BELT_BLOCK_LEN); EG(ret, err);

		/* Import r_bar as a big number in little endian
		 * (truncate our import to the bitlength size of q)
		 */
		if(q_len < (n * BELT_BLOCK_LEN)){
			r_bar_len = q_len;
			ret = local_memcpy(&r_bar[0], &r[0], r_bar_len); EG(ret, err);
			/* Handle the useless bits between q_bit_len and (8 * q_len) */
			if((q_bit_len % 8) != 0){
				r_bar[r_bar_len - 1] &= (u8)((0x1 << (q_bit_len % 8)) - 1);
			}
		}
		else{
			/* In this case, q_len is bigger than the size of r, we need to adapt:
			 * we truncate to the size of r.
			 * NOTE: we of course lose security, but this is the explicit choice
			 * of the user using a "small" hash function with a "big" order.
			 */
			MUST_HAVE((n * BELT_BLOCK_LEN) <= 0xffff, ret, err);
			r_bar_len = (u16)(n * BELT_BLOCK_LEN);
			ret = local_memcpy(&r_bar[0], &r[0], r_bar_len); EG(ret, err);
		}
		ret = _reverse_endianness(&r_bar[0], r_bar_len); EG(ret, err);
		ret = nn_init_from_buf(k, &r_bar[0], r_bar_len); EG(ret, err);

		/* Compare it to q */
		ret = nn_cmp(k, q, &cmp); EG(ret, err);
		/* Compare it to 0 */
		ret = nn_iszero(k, &iszero); EG(ret, err);

		if((i >= (2 * n)) && (cmp < 0) && (!iszero)){
			break;
		}
		i += (u32)1;
		/* If we have wrapped (meaning i > 2^32), we exit with failure */
		MUST_HAVE((i != 0), ret, err);
	}

	ret = 0;
err:
	/* Destroy local variables potentially containing sensitive data */
	IGNORE_RET_VAL(local_memset(theta, 0, sizeof(theta)));
	IGNORE_RET_VAL(local_memset(FE2OS_D, 0, sizeof(FE2OS_D)));

	return ret;
}
#endif

int __bign_init_pub_key(ec_pub_key *out_pub, const ec_priv_key *in_priv,
			 ec_alg_type key_type)
{
	prj_pt_src_t G;
	int ret, cmp;
	nn_src_t q;

	MUST_HAVE((out_pub != NULL), ret, err);

	/* Zero init public key to be generated */
	ret = local_memset(out_pub, 0, sizeof(ec_pub_key)); EG(ret, err);

	ret = priv_key_check_initialized_and_type(in_priv, key_type); EG(ret, err);
	q = &(in_priv->params->ec_gen_order);

	/* Sanity check on key compliance */
	MUST_HAVE((!nn_cmp(&(in_priv->x), q, &cmp)) && (cmp < 0), ret, err);

	/* Y = xG */
	G = &(in_priv->params->ec_gen);
	/* Use blinding when computing point scalar multiplication */
	ret = prj_pt_mul_blind(&(out_pub->y), &(in_priv->x), G); EG(ret, err);

	out_pub->key_type = key_type;
	out_pub->params = in_priv->params;
	out_pub->magic = PUB_KEY_MAGIC;

err:
	return ret;
}

int __bign_siglen(u16 p_bit_len, u16 q_bit_len, u8 hsize, u8 blocksize, u8 *siglen)
{
	int ret;

	MUST_HAVE(siglen != NULL, ret, err);
	MUST_HAVE((p_bit_len <= CURVES_MAX_P_BIT_LEN) &&
		  (q_bit_len <= CURVES_MAX_Q_BIT_LEN) &&
		  (hsize <= MAX_DIGEST_SIZE) && (blocksize <= MAX_BLOCK_SIZE), ret, err);
	(*siglen) = (u8)BIGN_SIGLEN(q_bit_len);
	ret = 0;

err:
	return ret;
}

/*
 * Generic *internal* BIGN signature functions (init, update and finalize).
 * Their purpose is to allow passing a specific hash function (along with
 * its output size) and the random ephemeral key k, so that compliance
 * tests against test vectors can be made without ugly hack in the code
 * itself.
 *
 * Implementation notes:
 *
 * a) The BIGN algorithm makes use of the OID of the external hash function.
 *    We let the upper layer provide us with this in the "adata" field of the
 *    context.
 *
 */

#define BIGN_SIGN_MAGIC ((word_t)(0x63439a2b38921340ULL))
#define BIGN_SIGN_CHECK_INITIALIZED(A, ret, err) \
	MUST_HAVE((((void *)(A)) != NULL) && ((A)->magic == BIGN_SIGN_MAGIC), ret, err)

int __bign_sign_init(struct ec_sign_context *ctx, ec_alg_type key_type)
{
	int ret;

	/* First, verify context has been initialized */
	ret = sig_sign_check_initialized(ctx); EG(ret, err);

	/* Additional sanity checks on input params from context */
	ret = key_pair_check_initialized_and_type(ctx->key_pair, key_type); EG(ret, err);

	MUST_HAVE((ctx->h != NULL) && (ctx->h->digest_size <= MAX_DIGEST_SIZE) &&
		  (ctx->h->block_size <= MAX_BLOCK_SIZE), ret, err);

	/* We check that our additional data is not NULL as it must contain
	 * the mandatory external hash OID.
	 */
	MUST_HAVE((ctx->adata != NULL) && (ctx->adata_len != 0), ret, err);

	/*
	 * Initialize hash context stored in our private part of context
	 * and record data init has been done
	 */
	/* Since we call a callback, sanity check our mapping */
	ret = hash_mapping_callbacks_sanity_check(ctx->h); EG(ret, err);
	ret = ctx->h->hfunc_init(&(ctx->sign_data.bign.h_ctx)); EG(ret, err);

	ctx->sign_data.bign.magic = BIGN_SIGN_MAGIC;

err:
	return ret;
}

int __bign_sign_update(struct ec_sign_context *ctx,
		       const u8 *chunk, u32 chunklen, ec_alg_type key_type)
{
	int ret;

	/*
	 * First, verify context has been initialized and private
	 * part too. This guarantees the context is an BIGN
	 * signature one and we do not update() or finalize()
	 * before init().
	 */
	ret = sig_sign_check_initialized(ctx); EG(ret, err);
	BIGN_SIGN_CHECK_INITIALIZED(&(ctx->sign_data.bign), ret, err);

	/* Additional sanity checks on input params from context */
	ret = key_pair_check_initialized_and_type(ctx->key_pair, key_type); EG(ret, err);

	/* 1. Compute h = H(m) */
	/* Since we call a callback, sanity check our mapping */
	ret = hash_mapping_callbacks_sanity_check(ctx->h); EG(ret, err);
	ret = ctx->h->hfunc_update(&(ctx->sign_data.bign.h_ctx), chunk, chunklen);

err:
	return ret;
}

int __bign_sign_finalize(struct ec_sign_context *ctx, u8 *sig, u8 siglen,
			  ec_alg_type key_type)
{
	int ret, cmp;
	const ec_priv_key *priv_key;
	prj_pt_src_t G;
	u8 hash[MAX_DIGEST_SIZE];
	u8 hash_belt[BELT_HASH_DIGEST_SIZE];
	u8 FE2OS_W[LOCAL_MAX(2 * BYTECEIL(CURVES_MAX_P_BIT_LEN), 2 * BIGN_S0_LEN(CURVES_MAX_Q_BIT_LEN))];
	bitcnt_t q_bit_len, p_bit_len;
	prj_pt kG;
	nn_src_t q, x;
	u8 hsize, p_len, l;
	nn k, h, tmp, s1;
	belt_hash_context belt_hash_ctx;
	const u8 *oid_ptr = NULL;
	u16 oid_len = 0;
#ifdef USE_SIG_BLINDING
	/* b is the blinding mask */
	nn b, binv;
	b.magic = binv.magic = WORD(0);
#endif

	k.magic = h.magic = WORD(0);
	tmp.magic = s1.magic = WORD(0);
	kG.magic = WORD(0);

	/*
	 * First, verify context has been initialized and private
	 * part too. This guarantees the context is an BIGN
	 * signature one and we do not finalize() before init().
	 */
	ret = sig_sign_check_initialized(ctx); EG(ret, err);
	BIGN_SIGN_CHECK_INITIALIZED(&(ctx->sign_data.bign), ret, err);
	MUST_HAVE((sig != NULL), ret, err);

	/* Additional sanity checks on input params from context */
	ret = key_pair_check_initialized_and_type(ctx->key_pair, key_type); EG(ret, err);

	/* Zero init out point */
	ret = local_memset(&kG, 0, sizeof(prj_pt)); EG(ret, err);

	/* Make things more readable */
	priv_key = &(ctx->key_pair->priv_key);
	q = &(priv_key->params->ec_gen_order);
	q_bit_len = priv_key->params->ec_gen_order_bitlen;
	p_bit_len = priv_key->params->ec_fp.p_bitlen;
	G = &(priv_key->params->ec_gen);
	p_len = (u8)BYTECEIL(p_bit_len);
	x = &(priv_key->x);
	hsize = ctx->h->digest_size;

	MUST_HAVE((priv_key->key_type == key_type), ret, err);

	/* Compute l depending on the order */
	l = (u8)BIGN_S0_LEN(q_bit_len);

	/* Sanity check */
	ret = nn_cmp(x, q, &cmp); EG(ret, err);
	/* This should not happen and means that our
	 * private key is not compliant!
	 */
	MUST_HAVE((cmp < 0), ret, err);

	dbg_nn_print("p", &(priv_key->params->ec_fp.p));
	dbg_nn_print("q", &(priv_key->params->ec_gen_order));
	dbg_priv_key_print("x", priv_key);
	dbg_ec_point_print("G", &(priv_key->params->ec_gen));
	dbg_pub_key_print("Y", &(ctx->key_pair->pub_key));

	/* Check given signature buffer length has the expected size */
	MUST_HAVE((siglen == BIGN_SIGLEN(q_bit_len)), ret, err);

	/* We check that our additional data is not NULL as it must contain
	 * the mandatory external hash OID.
	 */
	MUST_HAVE((ctx->adata != NULL) && (ctx->adata_len != 0), ret, err);

	/* 1. Compute h = H(m) */
	ret = local_memset(hash, 0, hsize); EG(ret, err);
	/* Since we call a callback, sanity check our mapping */
	ret = hash_mapping_callbacks_sanity_check(ctx->h); EG(ret, err);
	ret = ctx->h->hfunc_finalize(&(ctx->sign_data.bign.h_ctx), hash); EG(ret, err);
	dbg_buf_print("h", hash, hsize);


	/* 2. get a random value k in ]0,q[ */
#ifdef NO_KNOWN_VECTORS
	/* NOTE: when we do not need self tests for known vectors,
	 * we can be strict about random function handler!
	 * This allows us to avoid the corruption of such a pointer.
	 */
	/* Sanity check on the handler before calling it */
	if(ctx->rand != nn_get_random_mod){
#ifdef WITH_SIG_DBIGN
		/* In deterministic BIGN, nevermind! */
		if(key_type != DBIGN)
#endif
		{
			ret = -1;
			goto err;
		}
	}
#endif
	if(ctx->rand != NULL){
		/* Non-deterministic generation, or deterministic with
		 * test vectors.
		 */
		ret = ctx->rand(&k, q);
	}
	else
#if defined(WITH_SIG_DBIGN)
	{
		/* Only applies for DETERMINISTIC BIGN */
		if(key_type != DBIGN){
			ret = -1;
			goto err;
		}
		/* Deterministically generate k as STB 34.101.45 mandates */
		ret = __bign_determinitic_nonce(&k, q, q_bit_len, &(priv_key->x), ctx->adata, ctx->adata_len,  hash, hsize);
	}
#else
	{
		/* NULL rand function is not accepted for regular BIGN */
		ret = -1;
		goto err;
	}
#endif
	if (ret) {
		ret = -1;
		goto err;
	}
	dbg_nn_print("k", &k);

#ifdef USE_SIG_BLINDING
	/* Note: if we use blinding, r and e are multiplied by
	 * a random value b in ]0,q[ */
	ret = nn_get_random_mod(&b, q); EG(ret, err);
	/* NOTE: we use Fermat's little theorem inversion for
	 * constant time here. This is possible since q is prime.
	 */
	ret = nn_modinv_fermat(&binv, &b, q); EG(ret, err);

	dbg_nn_print("b", &b);
#endif /* USE_SIG_BLINDING */


	/* 3. Compute W = (W_x,W_y) = kG */
#ifdef USE_SIG_BLINDING
	ret = prj_pt_mul_blind(&kG, &k, G); EG(ret, err);
#else
	ret = prj_pt_mul(&kG, &k, G); EG(ret, err);
#endif /* USE_SIG_BLINDING */
	ret = prj_pt_unique(&kG, &kG); EG(ret, err);

	dbg_nn_print("W_x", &(kG.X.fp_val));
	dbg_nn_print("W_y", &(kG.Y.fp_val));

	/* 4. Compute s0 = <BELT-HASH(OID(H) || <<FE2OS(W_x)> || <FE2OS(W_y)>>2*l || H(X))>l */
	ret = belt_hash_init(&belt_hash_ctx); EG(ret, err);
	ret = bign_get_oid_from_adata(ctx->adata, ctx->adata_len, &oid_ptr, &oid_len); EG(ret, err);
	ret = belt_hash_update(&belt_hash_ctx, oid_ptr, oid_len); EG(ret, err);
	/**/
	ret = local_memset(FE2OS_W, 0, sizeof(FE2OS_W)); EG(ret, err);
	ret = fp_export_to_buf(&FE2OS_W[0],  p_len, &(kG.X)); EG(ret, err);
	ret = _reverse_endianness(&FE2OS_W[0],  p_len); EG(ret, err);
	ret = fp_export_to_buf(&FE2OS_W[p_len], p_len, &(kG.Y)); EG(ret, err);
	ret = _reverse_endianness(&FE2OS_W[p_len], p_len); EG(ret, err);
	/* Only hash the 2*l bytes of FE2OS(W_x) || FE2OS(W_y) */
	ret = belt_hash_update(&belt_hash_ctx, &FE2OS_W[0], (u32)(2*l)); EG(ret, err);
	/**/
	ret = belt_hash_update(&belt_hash_ctx, hash, hsize); EG(ret, err);
	/* Store our s0 */
	ret = local_memset(hash_belt, 0, sizeof(hash_belt)); EG(ret, err);
	ret = belt_hash_final(&belt_hash_ctx, hash_belt); EG(ret, err);
	ret = local_memset(&sig[0], 0, l); EG(ret, err);
	ret = local_memcpy(&sig[0], &hash_belt[0], LOCAL_MIN(l, BELT_HASH_DIGEST_SIZE)); EG(ret, err);
	dbg_buf_print("s0", &sig[0], LOCAL_MIN(l, BELT_HASH_DIGEST_SIZE));

	/* 5. Now compute s1 = (k - H_bar - (s0_bar + 2**l) * d) mod q */
	/* First import H and s0 as numbers modulo q */
	/* Import H */
	ret = _reverse_endianness(hash, hsize); EG(ret, err);
	ret = nn_init_from_buf(&h, hash, hsize); EG(ret, err);
	ret = nn_mod(&h, &h, q); EG(ret, err);
	/* Import s0_bar */
	ret = local_memcpy(FE2OS_W, &sig[0], l); EG(ret, err);
	ret = _reverse_endianness(FE2OS_W, l); EG(ret, err);
	ret = nn_init_from_buf(&s1, FE2OS_W, l); EG(ret, err);
	ret = nn_mod(&s1, &s1, q); EG(ret, err);
	/* Compute (s0_bar + 2**l) * d */
	ret = nn_init(&tmp, 0); EG(ret, err);
	ret = nn_one(&tmp); EG(ret, err);
	ret = nn_lshift(&tmp, &tmp, (bitcnt_t)(8*l)); EG(ret, err);
	ret = nn_mod(&tmp, &tmp, q); EG(ret, err);
	ret = nn_mod_add(&s1, &s1, &tmp, q); EG(ret, err);
#ifdef USE_SIG_BLINDING
	/* Blind s1 with b */
	ret = nn_mod_mul(&s1, &s1, &b, q); EG(ret, err);

	/* Blind the message hash */
	ret = nn_mod_mul(&h, &h, &b, q); EG(ret, err);

	/* Blind the nonce */
	ret = nn_mod_mul(&k, &k, &b, q); EG(ret, err);
#endif /* USE_SIG_BLINDING */

	ret = nn_mod_mul(&s1, &s1, &(priv_key->x), q); EG(ret, err);
	ret = nn_mod_sub(&s1, &k, &s1, q); EG(ret, err);
	ret = nn_mod_sub(&s1, &s1, &h, q); EG(ret, err);

#ifdef USE_SIG_BLINDING
	/* Unblind s1 */
	ret = nn_mod_mul(&s1, &s1, &binv, q); EG(ret, err);
#endif
	dbg_nn_print("s1", &s1);

	/* Clean hash buffer as we do not need it anymore */
	ret = local_memset(hash, 0, hsize); EG(ret, err);

	/* Now export s1 and reverse its endianness */
	ret = nn_export_to_buf(&sig[l], (u16)BIGN_S1_LEN(q_bit_len), &s1); EG(ret, err);
	ret = _reverse_endianness(&sig[l], (u16)BIGN_S1_LEN(q_bit_len));

err:
	nn_uninit(&k);
	nn_uninit(&h);
	nn_uninit(&tmp);
	nn_uninit(&s1);
	prj_pt_uninit(&kG);
#ifdef USE_SIG_BLINDING
	nn_uninit(&b);
	nn_uninit(&binv);
#endif

	/*
	 * We can now clear data part of the context. This will clear
	 * magic and avoid further reuse of the whole context.
	 */
	if(ctx != NULL){
		IGNORE_RET_VAL(local_memset(&(ctx->sign_data.bign), 0, sizeof(bign_sign_data)));
	}

	/* Clean what remains on the stack */
	PTR_NULLIFY(priv_key);
	PTR_NULLIFY(G);
	PTR_NULLIFY(q);
	PTR_NULLIFY(x);
	PTR_NULLIFY(oid_ptr);
	VAR_ZEROIFY(q_bit_len);
	VAR_ZEROIFY(hsize);
	VAR_ZEROIFY(oid_len);

	return ret;
}

/*
 * Generic *internal* BIGN verification functions (init, update and finalize).
 * Their purpose is to allow passing a specific hash function (along with
 * its output size) and the random ephemeral key k, so that compliance
 * tests against test vectors can be made without ugly hack in the code
 * itself.
 *
 * Implementation notes:
 *
 * a) The BIGN algorithm makes use of the OID of the external hash function.
 *    We let the upper layer provide us with this in the "adata" field of the
 *    context.
 */

#define BIGN_VERIFY_MAGIC ((word_t)(0xceff8344927346abULL))
#define BIGN_VERIFY_CHECK_INITIALIZED(A, ret, err) \
	MUST_HAVE((((void *)(A)) != NULL) && ((A)->magic == BIGN_VERIFY_MAGIC), ret, err)

int __bign_verify_init(struct ec_verify_context *ctx, const u8 *sig, u8 siglen,
			ec_alg_type key_type)
{
	bitcnt_t q_bit_len;
	nn_src_t q;
	nn *s0, *s1;
	u8 *s0_sig;
	u8 TMP[BYTECEIL(CURVES_MAX_Q_BIT_LEN)];
	u8 l;
	int ret, cmp;

	/* First, verify context has been initialized */
	ret = sig_verify_check_initialized(ctx); EG(ret, err);

	ret = local_memset(TMP, 0, sizeof(TMP)); EG(ret, err);

	/* Do some sanity checks on input params */
	ret = pub_key_check_initialized_and_type(ctx->pub_key, key_type); EG(ret, err);
	MUST_HAVE((ctx->h != NULL) && (ctx->h->digest_size <= MAX_DIGEST_SIZE) &&
		(ctx->h->block_size <= MAX_BLOCK_SIZE), ret, err);
	MUST_HAVE((sig != NULL), ret, err);

	/* We check that our additional data is not NULL as it must contain
	 * the mandatory external hash OID.
	 */
	MUST_HAVE((ctx->adata != NULL) && (ctx->adata_len != 0), ret, err);

	/* Make things more readable */
	q = &(ctx->pub_key->params->ec_gen_order);
	q_bit_len = ctx->pub_key->params->ec_gen_order_bitlen;
	s0 = &(ctx->verify_data.bign.s0);
	s1 = &(ctx->verify_data.bign.s1);
	s0_sig = (u8*)(&(ctx->verify_data.bign.s0_sig));

	/* Compute l depending on the order */
	l = (u8)BIGN_S0_LEN(q_bit_len);

	/* Check given signature length is the expected one */
	MUST_HAVE((siglen == BIGN_SIGLEN(q_bit_len)), ret, err);

	/* Copy s0 to be checked later */
	ret = local_memcpy(s0_sig, sig, l); EG(ret, err);

	/* Import s0 and s1 values from signature buffer */
	ret = local_memcpy(&TMP[0], sig, l); EG(ret, err);
	ret = _reverse_endianness(&TMP[0], l); EG(ret, err);
	ret = nn_init_from_buf(s0, &TMP[0], l); EG(ret, err);
	/**/
	ret = local_memcpy(&TMP[0], &sig[l], (u32)BIGN_S1_LEN(q_bit_len)); EG(ret, err);
	ret = _reverse_endianness(&TMP[0], (u16)BIGN_S1_LEN(q_bit_len)); EG(ret, err);
	ret = nn_init_from_buf(s1, &TMP[0], (u8)BIGN_S1_LEN(q_bit_len)); EG(ret, err);
	dbg_nn_print("s0", s0);
	dbg_nn_print("s1", s1);

	/* 1. Reject the signature if s1 >= q */
	ret = nn_cmp(s1, q, &cmp); EG(ret, err);
	MUST_HAVE((cmp < 0), ret, err);

	/* Initialize the remaining of verify context. */
	/* Since we call a callback, sanity check our mapping */
	ret = hash_mapping_callbacks_sanity_check(ctx->h); EG(ret, err);
	ret = ctx->h->hfunc_init(&(ctx->verify_data.bign.h_ctx)); EG(ret, err);

	ctx->verify_data.bign.magic = BIGN_VERIFY_MAGIC;

 err:
	VAR_ZEROIFY(q_bit_len);
	PTR_NULLIFY(q);
	PTR_NULLIFY(s0);
	PTR_NULLIFY(s1);
	PTR_NULLIFY(s0_sig);

	return ret;
}

int __bign_verify_update(struct ec_verify_context *ctx,
			 const u8 *chunk, u32 chunklen, ec_alg_type key_type)
{
	int ret;

	/*
	 * First, verify context has been initialized and public
	 * part too. This guarantees the context is an BIGN
	 * verification one and we do not update() or finalize()
	 * before init().
	 */
	ret = sig_verify_check_initialized(ctx); EG(ret, err);
	BIGN_VERIFY_CHECK_INITIALIZED(&(ctx->verify_data.bign), ret, err);
	/* Do some sanity checks on input params */
	ret = pub_key_check_initialized_and_type(ctx->pub_key, key_type); EG(ret, err);

	/* 2. Compute h = H(m) */
	/* Since we call a callback, sanity check our mapping */
	ret = hash_mapping_callbacks_sanity_check(ctx->h); EG(ret, err);
	ret = ctx->h->hfunc_update(&(ctx->verify_data.bign.h_ctx), chunk, chunklen);

err:
	return ret;
}

int __bign_verify_finalize(struct ec_verify_context *ctx,
			    ec_alg_type key_type)
{
	prj_pt uG, vY;
	prj_pt_src_t G, Y;
	prj_pt_t W;
	u8 hash[MAX_DIGEST_SIZE];
	u8 hash_belt[BELT_HASH_DIGEST_SIZE];
	u8 t[BIGN_S0_LEN(CURVES_MAX_Q_BIT_LEN)];
	u8 FE2OS_W[LOCAL_MAX(2 * BYTECEIL(CURVES_MAX_P_BIT_LEN), 2 * BIGN_S0_LEN(CURVES_MAX_Q_BIT_LEN))];
	bitcnt_t p_bit_len, q_bit_len;
	nn_src_t q;
	nn h, tmp;
	nn *s0, *s1;
	u8 *s0_sig;
	u8 hsize, p_len, l;
	belt_hash_context belt_hash_ctx;
	int ret, iszero, cmp;
	const u8 *oid_ptr = NULL;
	u16 oid_len = 0;

	h.magic = tmp.magic = WORD(0);
	uG.magic = vY.magic = WORD(0);

	/* NOTE: we reuse uG for W to optimize local variables */
	W = &uG;

	/*
	 * First, verify context has been initialized and public
	 * part too. This guarantees the context is an BIGN
	 * verification one and we do not finalize() before init().
	 */
	ret = sig_verify_check_initialized(ctx); EG(ret, err);
	BIGN_VERIFY_CHECK_INITIALIZED(&(ctx->verify_data.bign), ret, err);
	/* Do some sanity checks on input params */
	ret = pub_key_check_initialized_and_type(ctx->pub_key, key_type); EG(ret, err);

	/* We check that our additional data is not NULL as it must contain
	 * the mandatory external hash OID.
	 */
	MUST_HAVE((ctx->adata != NULL) && (ctx->adata_len != 0), ret, err);

	/* Zero init points */
	ret = local_memset(&uG, 0, sizeof(prj_pt)); EG(ret, err);
	ret = local_memset(&vY, 0, sizeof(prj_pt)); EG(ret, err);

	/* Make things more readable */
	G = &(ctx->pub_key->params->ec_gen);
	Y = &(ctx->pub_key->y);
	q = &(ctx->pub_key->params->ec_gen_order);
	p_bit_len = ctx->pub_key->params->ec_fp.p_bitlen;
	q_bit_len = ctx->pub_key->params->ec_gen_order_bitlen;
	p_len = (u8)BYTECEIL(p_bit_len);
	hsize = ctx->h->digest_size;
	s0 = &(ctx->verify_data.bign.s0);
	s1 = &(ctx->verify_data.bign.s1);
	s0_sig = (u8*)(&(ctx->verify_data.bign.s0_sig));

	/* Sanity check */
	MUST_HAVE((sizeof(t) == sizeof(ctx->verify_data.bign.s0_sig)), ret, err);

	/* Compute our l that is inherited from q size */
	l = (u8)BIGN_S0_LEN(q_bit_len);

	/* 2. Compute h = H(m) */
	/* Since we call a callback, sanity check our mapping */
	ret = hash_mapping_callbacks_sanity_check(ctx->h); EG(ret, err);
	ret = ctx->h->hfunc_finalize(&(ctx->verify_data.bign.h_ctx), hash); EG(ret, err);
	dbg_buf_print("h = H(m)", hash, hsize);

	/* Import H */
	ret = _reverse_endianness(hash, hsize); EG(ret, err);
	ret = nn_init_from_buf(&h, hash, hsize); EG(ret, err);
	ret = nn_mod(&h, &h, q); EG(ret, err);
	/* NOTE: we reverse endianness again of the hash since we will
	 * have to use the original value.
	 */
	ret = _reverse_endianness(hash, hsize); EG(ret, err);

	/* Compute ((s1_bar + h_bar) mod q) */
	ret = nn_mod_add(&h, &h, s1, q); EG(ret, err);
	/* Compute (s0_bar + 2**l) mod q */
	ret = nn_init(&tmp, 0); EG(ret, err);
	ret = nn_one(&tmp); EG(ret, err);
	ret = nn_lshift(&tmp, &tmp, (bitcnt_t)(8*l)); EG(ret, err);
	ret = nn_mod(&tmp, &tmp, q); EG(ret, err);
	ret = nn_mod_add(&tmp, &tmp, s0, q); EG(ret, err);

	/* 3. Compute ((s1_bar + h_bar) mod q) * G + ((s0_bar + 2**l) mod q) * Y. */
	ret = prj_pt_mul(&uG, &h, G); EG(ret, err);
	ret = prj_pt_mul(&vY, &tmp, Y); EG(ret, err);
	ret = prj_pt_add(W, &uG, &vY); EG(ret, err);
	/* 5. If the result is point at infinity, return false. */
	ret = prj_pt_iszero(W, &iszero); EG(ret, err);
	MUST_HAVE((!iszero), ret, err);
	ret = prj_pt_unique(W, W); EG(ret, err);

	/* 6. Compute t = <BELT-HASH(OID(H) || <<FE2OS(W_x)> || <FE2OS(W_y)>>2*l || H(X))>l */
	ret = belt_hash_init(&belt_hash_ctx); EG(ret, err);
	ret = bign_get_oid_from_adata(ctx->adata, ctx->adata_len, &oid_ptr, &oid_len); EG(ret, err);
	ret = belt_hash_update(&belt_hash_ctx, oid_ptr, oid_len); EG(ret, err);
	/**/
	ret = local_memset(FE2OS_W, 0, sizeof(FE2OS_W)); EG(ret, err);
	ret = fp_export_to_buf(&FE2OS_W[0], p_len, &(W->X)); EG(ret, err);
	ret = _reverse_endianness(&FE2OS_W[0], p_len); EG(ret, err);
	ret = fp_export_to_buf(&FE2OS_W[p_len], p_len, &(W->Y)); EG(ret, err);
	ret = _reverse_endianness(&FE2OS_W[p_len], p_len); EG(ret, err);
	/* Only hash the 2*l bytes of FE2OS(W_x) || FE2OS(W_y) */
	ret = belt_hash_update(&belt_hash_ctx, &FE2OS_W[0], (u32)(2*l)); EG(ret, err);
	/**/
	ret = belt_hash_update(&belt_hash_ctx, hash, hsize); EG(ret, err);
	/* Store our t */
	ret = local_memset(hash_belt, 0, sizeof(hash_belt)); EG(ret, err);
	ret = belt_hash_final(&belt_hash_ctx, hash_belt); EG(ret, err);
	ret = local_memset(&t[0], 0, l); EG(ret, err);
	ret = local_memcpy(&t[0], &hash_belt[0], LOCAL_MIN(l, BELT_HASH_DIGEST_SIZE)); EG(ret, err);

	/* 10. Accept the signature if and only if t equals s0_sig' */
	ret = are_equal(t, s0_sig, l, &cmp); EG(ret, err);
	ret = (cmp == 0) ? -1 : 0;

 err:
	prj_pt_uninit(&uG);
	prj_pt_uninit(&vY);
	nn_uninit(&h);
	nn_uninit(&tmp);

	/*
	 * We can now clear data part of the context. This will clear
	 * magic and avoid further reuse of the whole context.
	 */
	if(ctx != NULL){
		IGNORE_RET_VAL(local_memset(&(ctx->verify_data.bign), 0, sizeof(bign_verify_data)));
	}

	/* Clean what remains on the stack */
	PTR_NULLIFY(G);
	PTR_NULLIFY(Y);
	PTR_NULLIFY(W);
	VAR_ZEROIFY(p_bit_len);
	VAR_ZEROIFY(q_bit_len);
	VAR_ZEROIFY(p_len);
	PTR_NULLIFY(q);
	PTR_NULLIFY(s0);
	PTR_NULLIFY(s1);
	PTR_NULLIFY(s0_sig);
	PTR_NULLIFY(oid_ptr);
	VAR_ZEROIFY(hsize);
	VAR_ZEROIFY(oid_len);

	return ret;
}

#else /* defined(WITH_SIG_BIGN) || defined(WITH_SIG_DBIGN) */

/*
 * Dummy definition to avoid the empty translation unit ISO C warning
 */
typedef int dummy;
#endif /* WITH_SIG_BIGN */