summaryrefslogtreecommitdiff
path: root/contrib/libdiff/lib/diff_myers.c
blob: c886d1a285863fa2148b2b295b733d08fe7c9040 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
/* Myers diff algorithm implementation, invented by Eugene W. Myers [1].
 * Implementations of both the Myers Divide Et Impera (using linear space)
 * and the canonical Myers algorithm (using quadratic space). */
/*
 * Copyright (c) 2020 Neels Hofmeyr <neels@hofmeyr.de>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>

#include <arraylist.h>
#include <diff_main.h>

#include "diff_internal.h"
#include "diff_debug.h"

/* Myers' diff algorithm [1] is nicely explained in [2].
 * [1] http://www.xmailserver.org/diff2.pdf
 * [2] https://blog.jcoglan.com/2017/02/12/the-myers-diff-algorithm-part-1/ ff.
 *
 * Myers approaches finding the smallest diff as a graph problem.
 * The crux is that the original algorithm requires quadratic amount of memory:
 * both sides' lengths added, and that squared. So if we're diffing lines of
 * text, two files with 1000 lines each would blow up to a matrix of about
 * 2000 * 2000 ints of state, about 16 Mb of RAM to figure out 2 kb of text.
 * The solution is using Myers' "divide and conquer" extension algorithm, which
 * does the original traversal from both ends of the files to reach a middle
 * where these "snakes" touch, hence does not need to backtrace the traversal,
 * and so gets away with only keeping a single column of that huge state matrix
 * in memory.
 */

struct diff_box {
	unsigned int left_start;
	unsigned int left_end;
	unsigned int right_start;
	unsigned int right_end;
};

/* If the two contents of a file are A B C D E and X B C Y,
 * the Myers diff graph looks like:
 *
 *   k0  k1
 *    \   \
 * k-1     0 1 2 3 4 5
 *   \      A B C D E
 *     0   o-o-o-o-o-o
 *      X  | | | | | |
 *     1   o-o-o-o-o-o
 *      B  | |\| | | |
 *     2   o-o-o-o-o-o
 *      C  | | |\| | |
 *     3   o-o-o-o-o-o
 *      Y  | | | | | |\
 *     4   o-o-o-o-o-o c1
 *                  \ \
 *                 c-1 c0
 *
 * Moving right means delete an atom from the left-hand-side,
 * Moving down means add an atom from the right-hand-side.
 * Diagonals indicate identical atoms on both sides, the challenge is to use as
 * many diagonals as possible.
 *
 * The original Myers algorithm walks all the way from the top left to the
 * bottom right, remembers all steps, and then backtraces to find the shortest
 * path. However, that requires keeping the entire graph in memory, which needs
 * quadratic space.
 *
 * Myers adds a variant that uses linear space -- note, not linear time, only
 * linear space: walk forward and backward, find a meeting point in the middle,
 * and recurse on the two separate sections. This is called "divide and
 * conquer".
 *
 * d: the step number, starting with 0, a.k.a. the distance from the starting
 *    point.
 * k: relative index in the state array for the forward scan, indicating on
 *    which diagonal through the diff graph we currently are.
 * c: relative index in the state array for the backward scan, indicating the
 *    diagonal number from the bottom up.
 *
 * The "divide and conquer" traversal through the Myers graph looks like this:
 *
 *      | d=   0   1   2   3      2   1   0
 *  ----+--------------------------------------------
 *  k=  |                                      c=
 *   4  |                                       3
 *      |
 *   3  |                 3,0    5,2            2
 *      |                /          \
 *   2  |             2,0            5,3        1
 *      |            /                 \
 *   1  |         1,0     4,3 >= 4,3    5,4<--  0
 *      |        /       /          \  /
 *   0  |  -->0,0     3,3            4,4       -1
 *      |        \   /              /
 *  -1  |         0,1     1,2    3,4           -2
 *      |            \   /
 *  -2  |             0,2                      -3
 *      |                \
 *      |                 0,3
 *      |  forward->                 <-backward
 *
 * x,y pairs here are the coordinates in the Myers graph:
 * x = atom index in left-side source, y = atom index in the right-side source.
 *
 * Only one forward column and one backward column are kept in mem, each need at
 * most left.len + 1 + right.len items.  Note that each d step occupies either
 * the even or the odd items of a column: if e.g. the previous column is in the
 * odd items, the next column is formed in the even items, without overwriting
 * the previous column's results.
 *
 * Also note that from the diagonal index k and the x coordinate, the y
 * coordinate can be derived:
 *    y = x - k
 * Hence the state array only needs to keep the x coordinate, i.e. the position
 * in the left-hand file, and the y coordinate, i.e. position in the right-hand
 * file, is derived from the index in the state array.
 *
 * The two traces meet at 4,3, the first step (here found in the forward
 * traversal) where a forward position is on or past a backward traced position
 * on the same diagonal.
 *
 * This divides the problem space into:
 *
 *         0 1 2 3 4 5
 *          A B C D E
 *     0   o-o-o-o-o
 *      X  | | | | |
 *     1   o-o-o-o-o
 *      B  | |\| | |
 *     2   o-o-o-o-o
 *      C  | | |\| |
 *     3   o-o-o-o-*-o   *: forward and backward meet here
 *      Y          | |
 *     4           o-o
 *
 * Doing the same on each section lead to:
 *
 *         0 1 2 3 4 5
 *          A B C D E
 *     0   o-o
 *      X  | |
 *     1   o-b    b: backward d=1 first reaches here (sliding up the snake)
 *      B     \   f: then forward d=2 reaches here (sliding down the snake)
 *     2       o     As result, the box from b to f is found to be identical;
 *      C       \    leaving a top box from 0,0 to 1,1 and a bottom trivial
 *     3         f-o tail 3,3 to 4,3.
 *
 *     3           o-*
 *      Y            |
 *     4             o   *: forward and backward meet here
 *
 * and solving the last top left box gives:
 *
 *         0 1 2 3 4 5
 *          A B C D E           -A
 *     0   o-o                  +X
 *      X    |                   B
 *     1     o                   C
 *      B     \                 -D
 *     2       o                -E
 *      C       \               +Y
 *     3         o-o-o
 *      Y            |
 *     4             o
 *
 */

#define xk_to_y(X, K) ((X) - (K))
#define xc_to_y(X, C, DELTA) ((X) - (C) + (DELTA))
#define k_to_c(K, DELTA) ((K) + (DELTA))
#define c_to_k(C, DELTA) ((C) - (DELTA))

/* Do one forwards step in the "divide and conquer" graph traversal.
 * left: the left side to diff.
 * right: the right side to diff against.
 * kd_forward: the traversal state for forwards traversal, modified by this
 *             function.
 *             This is carried over between invocations with increasing d.
 *             kd_forward points at the center of the state array, allowing
 *             negative indexes.
 * kd_backward: the traversal state for backwards traversal, to find a meeting
 *              point.
 *              Since forwards is done first, kd_backward will be valid for d -
 *              1, not d.
 *              kd_backward points at the center of the state array, allowing
 *              negative indexes.
 * d: Step or distance counter, indicating for what value of d the kd_forward
 *    should be populated.
 *    For d == 0, kd_forward[0] is initialized, i.e. the first invocation should
 *    be for d == 0.
 * meeting_snake: resulting meeting point, if any.
 * Return true when a meeting point has been identified.
 */
static int
diff_divide_myers_forward(bool *found_midpoint,
			  struct diff_data *left, struct diff_data *right,
			  int *kd_forward, int *kd_backward, int d,
			  struct diff_box *meeting_snake)
{
	int delta = (int)right->atoms.len - (int)left->atoms.len;
	int k;
	int x;
	int prev_x;
	int prev_y;
	int x_before_slide;
	*found_midpoint = false;

	for (k = d; k >= -d; k -= 2) {
		if (k < -(int)right->atoms.len || k > (int)left->atoms.len) {
			/* This diagonal is completely outside of the Myers
			 * graph, don't calculate it. */
			if (k < 0) {
				/* We are traversing negatively, and already
				 * below the entire graph, nothing will come of
				 * this. */
				debug(" break\n");
				break;
			}
			debug(" continue\n");
			continue;
		}
		if (d == 0) {
			/* This is the initializing step. There is no prev_k
			 * yet, get the initial x from the top left of the Myers
			 * graph. */
			x = 0;
			prev_x = x;
			prev_y = xk_to_y(x, k);
		}
		/* Favoring "-" lines first means favoring moving rightwards in
		 * the Myers graph.
		 * For this, all k should derive from k - 1, only the bottom
		 * most k derive from k + 1:
		 *
		 *      | d=   0   1   2
		 *  ----+----------------
		 *  k=  |
		 *   2  |             2,0 <-- from prev_k = 2 - 1 = 1
		 *      |            /
		 *   1  |         1,0
		 *      |        /
		 *   0  |  -->0,0     3,3
		 *      |       \\   /
		 *  -1  |         0,1 <-- bottom most for d=1 from
		 *      |           \\    prev_k = -1 + 1 = 0
		 *  -2  |             0,2 <-- bottom most for d=2 from
		 *                            prev_k = -2 + 1 = -1
		 *
		 * Except when a k + 1 from a previous run already means a
		 * further advancement in the graph.
		 * If k == d, there is no k + 1 and k - 1 is the only option.
		 * If k < d, use k + 1 in case that yields a larger x. Also use
		 * k + 1 if k - 1 is outside the graph.
		 */
		else if (k > -d
			 && (k == d
			     || (k - 1 >= -(int)right->atoms.len
				 && kd_forward[k - 1] >= kd_forward[k + 1]))) {
			/* Advance from k - 1.
			 * From position prev_k, step to the right in the Myers
			 * graph: x += 1.
			 */
			int prev_k = k - 1;
			prev_x = kd_forward[prev_k];
			prev_y = xk_to_y(prev_x, prev_k);
			x = prev_x + 1;
		} else {
			/* The bottom most one.
			 * From position prev_k, step to the bottom in the Myers
			 * graph: y += 1.
			 * Incrementing y is achieved by decrementing k while
			 * keeping the same x.
			 * (since we're deriving y from y = x - k).
			 */
			int prev_k = k + 1;
			prev_x = kd_forward[prev_k];
			prev_y = xk_to_y(prev_x, prev_k);
			x = prev_x;
		}

		x_before_slide = x;
		/* Slide down any snake that we might find here. */
		while (x < left->atoms.len && xk_to_y(x, k) < right->atoms.len) {
			bool same;
			int r = diff_atom_same(&same,
					       &left->atoms.head[x],
					       &right->atoms.head[
						xk_to_y(x, k)]);
			if (r)
				return r;
			if (!same)
				break;
			x++;
		}
		kd_forward[k] = x;
#if 0
		if (x_before_slide != x) {
			debug("  down %d similar lines\n", x - x_before_slide);
		}

#if DEBUG
		{
			int fi;
			for (fi = d; fi >= k; fi--) {
				debug("kd_forward[%d] = (%d, %d)\n", fi,
				      kd_forward[fi], kd_forward[fi] - fi);
			}
		}
#endif
#endif

		if (x < 0 || x > left->atoms.len
		    || xk_to_y(x, k) < 0 || xk_to_y(x, k) > right->atoms.len)
			continue;

		/* Figured out a new forwards traversal, see if this has gone
		 * onto or even past a preceding backwards traversal.
		 *
		 * If the delta in length is odd, then d and backwards_d hit the
		 * same state indexes:
		 *      | d=   0   1   2      1   0
		 *  ----+----------------    ----------------
		 *  k=  |                              c=
		 *   4  |                               3
		 *      |
		 *   3  |                               2
		 *      |                same
		 *   2  |             2,0====5,3        1
		 *      |            /          \
		 *   1  |         1,0            5,4<-- 0
		 *      |        /              /
		 *   0  |  -->0,0     3,3====4,4       -1
		 *      |        \   /
		 *  -1  |         0,1                  -2
		 *      |            \
		 *  -2  |             0,2              -3
		 *      |
		 *
		 * If the delta is even, they end up off-by-one, i.e. on
		 * different diagonals:
		 *
		 *      | d=   0   1   2    1   0
		 *  ----+----------------  ----------------
		 *      |                            c=
		 *   3  |                             3
		 *      |
		 *   2  |             2,0 off         2
		 *      |            /   \\
		 *   1  |         1,0      4,3        1
		 *      |        /       //   \
		 *   0  |  -->0,0     3,3      4,4<-- 0
		 *      |        \   /        /
		 *  -1  |         0,1      3,4       -1
		 *      |            \   //
		 *  -2  |             0,2            -2
		 *      |
		 *
		 * So in the forward path, we can only match up diagonals when
		 * the delta is odd.
		 */
		if ((delta & 1) == 0)
			continue;
		 /* Forwards is done first, so the backwards one was still at
		  * d - 1. Can't do this for d == 0. */
		int backwards_d = d - 1;
		if (backwards_d < 0)
			continue;

		/* If both sides have the same length, forward and backward
		 * start on the same diagonal, meaning the backwards state index
		 * c == k.
		 * As soon as the lengths are not the same, the backwards
		 * traversal starts on a different diagonal, and c = k shifted
		 * by the difference in length.
		 */
		int c = k_to_c(k, delta);

		/* When the file sizes are very different, the traversal trees
		 * start on far distant diagonals.
		 * They don't necessarily meet straight on. See whether this
		 * forward value is on a diagonal that is also valid in
		 * kd_backward[], and match them if so. */
		if (c >= -backwards_d && c <= backwards_d) {
			/* Current k is on a diagonal that exists in
			 * kd_backward[]. If the two x positions have met or
			 * passed (forward walked onto or past backward), then
			 * we've found a midpoint / a mid-box.
			 *
			 * When forwards and backwards traversals meet, the
			 * endpoints of the mid-snake are not the two points in
			 * kd_forward and kd_backward, but rather the section
			 * that was slid (if any) of the current
			 * forward/backward traversal only.
			 *
			 * For example:
			 *
			 *   o
			 *    \
			 *     o
			 *      \
			 *       o
			 *        \
			 *         o
			 *          \
			 *       X o o
			 *       | | |
			 *     o-o-o o
			 *          \|
			 *           M
			 *            \
			 *             o
			 *              \
			 *               A o
			 *               | |
			 *             o-o-o
			 *
			 * The forward traversal reached M from the top and slid
			 * downwards to A.  The backward traversal already
			 * reached X, which is not a straight line from M
			 * anymore, so picking a mid-snake from M to X would
			 * yield a mistake.
			 *
			 * The correct mid-snake is between M and A. M is where
			 * the forward traversal hit the diagonal that the
			 * backward traversal has already passed, and A is what
			 * it reaches when sliding down identical lines.
			 */
			int backward_x = kd_backward[c];
			if (x >= backward_x) {
				if (x_before_slide != x) {
					/* met after sliding up a mid-snake */
					*meeting_snake = (struct diff_box){
						.left_start = x_before_slide,
						.left_end = x,
						.right_start = xc_to_y(x_before_slide,
								       c, delta),
						.right_end = xk_to_y(x, k),
					};
				} else {
					/* met after a side step, non-identical
					 * line. Mark that as box divider
					 * instead. This makes sure that
					 * myers_divide never returns the same
					 * box that came as input, avoiding
					 * "infinite" looping. */
					*meeting_snake = (struct diff_box){
						.left_start = prev_x,
						.left_end = x,
						.right_start = prev_y,
						.right_end = xk_to_y(x, k),
					};
				}
				debug("HIT x=(%u,%u) - y=(%u,%u)\n",
				      meeting_snake->left_start,
				      meeting_snake->right_start,
				      meeting_snake->left_end,
				      meeting_snake->right_end);
				debug_dump_myers_graph(left, right, NULL,
						       kd_forward, d,
						       kd_backward, d-1);
				*found_midpoint = true;
				return 0;
			}
		}
	}

	return 0;
}

/* Do one backwards step in the "divide and conquer" graph traversal.
 * left: the left side to diff.
 * right: the right side to diff against.
 * kd_forward: the traversal state for forwards traversal, to find a meeting
 *             point.
 *             Since forwards is done first, after this, both kd_forward and
 *             kd_backward will be valid for d.
 *             kd_forward points at the center of the state array, allowing
 *             negative indexes.
 * kd_backward: the traversal state for backwards traversal, to find a meeting
 *              point.
 *              This is carried over between invocations with increasing d.
 *              kd_backward points at the center of the state array, allowing
 *              negative indexes.
 * d: Step or distance counter, indicating for what value of d the kd_backward
 *    should be populated.
 *    Before the first invocation, kd_backward[0] shall point at the bottom
 *    right of the Myers graph (left.len, right.len).
 *    The first invocation will be for d == 1.
 * meeting_snake: resulting meeting point, if any.
 * Return true when a meeting point has been identified.
 */
static int
diff_divide_myers_backward(bool *found_midpoint,
			   struct diff_data *left, struct diff_data *right,
			   int *kd_forward, int *kd_backward, int d,
			   struct diff_box *meeting_snake)
{
	int delta = (int)right->atoms.len - (int)left->atoms.len;
	int c;
	int x;
	int prev_x;
	int prev_y;
	int x_before_slide;

	*found_midpoint = false;

	for (c = d; c >= -d; c -= 2) {
		if (c < -(int)left->atoms.len || c > (int)right->atoms.len) {
			/* This diagonal is completely outside of the Myers
			 * graph, don't calculate it. */
			if (c < 0) {
				/* We are traversing negatively, and already
				 * below the entire graph, nothing will come of
				 * this. */
				break;
			}
			continue;
		}
		if (d == 0) {
			/* This is the initializing step. There is no prev_c
			 * yet, get the initial x from the bottom right of the
			 * Myers graph. */
			x = left->atoms.len;
			prev_x = x;
			prev_y = xc_to_y(x, c, delta);
		}
		/* Favoring "-" lines first means favoring moving rightwards in
		 * the Myers graph.
		 * For this, all c should derive from c - 1, only the bottom
		 * most c derive from c + 1:
		 *
		 *                                  2   1   0
		 *  ---------------------------------------------------
		 *                                               c=
		 *                                                3
		 *
		 *         from prev_c = c - 1 --> 5,2            2
		 *                                    \
		 *                                     5,3        1
		 *                                        \
		 *                                 4,3     5,4<-- 0
		 *                                    \   /
		 *  bottom most for d=1 from c + 1 --> 4,4       -1
		 *                                    /
		 *         bottom most for d=2 --> 3,4           -2
		 *
		 * Except when a c + 1 from a previous run already means a
		 * further advancement in the graph.
		 * If c == d, there is no c + 1 and c - 1 is the only option.
		 * If c < d, use c + 1 in case that yields a larger x.
		 * Also use c + 1 if c - 1 is outside the graph.
		 */
		else if (c > -d && (c == d
				    || (c - 1 >= -(int)right->atoms.len
					&& kd_backward[c - 1] <= kd_backward[c + 1]))) {
			/* A top one.
			 * From position prev_c, step upwards in the Myers
			 * graph: y -= 1.
			 * Decrementing y is achieved by incrementing c while
			 * keeping the same x. (since we're deriving y from
			 * y = x - c + delta).
			 */
			int prev_c = c - 1;
			prev_x = kd_backward[prev_c];
			prev_y = xc_to_y(prev_x, prev_c, delta);
			x = prev_x;
		} else {
			/* The bottom most one.
			 * From position prev_c, step to the left in the Myers
			 * graph: x -= 1.
			 */
			int prev_c = c + 1;
			prev_x = kd_backward[prev_c];
			prev_y = xc_to_y(prev_x, prev_c, delta);
			x = prev_x - 1;
		}

		/* Slide up any snake that we might find here (sections of
		 * identical lines on both sides). */
#if 0
		debug("c=%d x-1=%d Yb-1=%d-1=%d\n", c, x-1, xc_to_y(x, c,
								    delta),
		      xc_to_y(x, c, delta)-1);
		if (x > 0) {
			debug("  l=");
			debug_dump_atom(left, right, &left->atoms.head[x-1]);
		}
		if (xc_to_y(x, c, delta) > 0) {
			debug("  r=");
			debug_dump_atom(right, left,
				&right->atoms.head[xc_to_y(x, c, delta)-1]);
		}
#endif
		x_before_slide = x;
		while (x > 0 && xc_to_y(x, c, delta) > 0) {
			bool same;
			int r = diff_atom_same(&same,
					       &left->atoms.head[x-1],
					       &right->atoms.head[
						xc_to_y(x, c, delta)-1]);
			if (r)
				return r;
			if (!same)
				break;
			x--;
		}
		kd_backward[c] = x;
#if 0
		if (x_before_slide != x) {
			debug("  up %d similar lines\n", x_before_slide - x);
		}

		if (DEBUG) {
			int fi;
			for (fi = d; fi >= c; fi--) {
				debug("kd_backward[%d] = (%d, %d)\n",
				      fi,
				      kd_backward[fi],
				      kd_backward[fi] - fi + delta);
			}
		}
#endif

		if (x < 0 || x > left->atoms.len
		    || xc_to_y(x, c, delta) < 0
		    || xc_to_y(x, c, delta) > right->atoms.len)
			continue;

		/* Figured out a new backwards traversal, see if this has gone
		 * onto or even past a preceding forwards traversal.
		 *
		 * If the delta in length is even, then d and backwards_d hit
		 * the same state indexes -- note how this is different from in
		 * the forwards traversal, because now both d are the same:
		 *
		 *      | d=   0   1   2      2   1   0
		 *  ----+----------------    --------------------
		 *  k=  |                                  c=
		 *   4  |
		 *      |
		 *   3  |                                   3
		 *      |                same
		 *   2  |             2,0====5,2            2
		 *      |            /          \
		 *   1  |         1,0            5,3        1
		 *      |        /              /  \
		 *   0  |  -->0,0     3,3====4,3    5,4<--  0
		 *      |        \   /             /
		 *  -1  |         0,1            4,4       -1
		 *      |            \
		 *  -2  |             0,2                  -2
		 *      |
		 *                                      -3
		 * If the delta is odd, they end up off-by-one, i.e. on
		 * different diagonals.
		 * So in the backward path, we can only match up diagonals when
		 * the delta is even.
		 */
		if ((delta & 1) != 0)
			continue;
		/* Forwards was done first, now both d are the same. */
		int forwards_d = d;

		/* As soon as the lengths are not the same, the
		 * backwards traversal starts on a different diagonal,
		 * and c = k shifted by the difference in length.
		 */
		int k = c_to_k(c, delta);

		/* When the file sizes are very different, the traversal trees
		 * start on far distant diagonals.
		 * They don't necessarily meet straight on. See whether this
		 * backward value is also on a valid diagonal in kd_forward[],
		 * and match them if so. */
		if (k >= -forwards_d && k <= forwards_d) {
			/* Current c is on a diagonal that exists in
			 * kd_forward[]. If the two x positions have met or
			 * passed (backward walked onto or past forward), then
			 * we've found a midpoint / a mid-box.
			 *
			 * When forwards and backwards traversals meet, the
			 * endpoints of the mid-snake are not the two points in
			 * kd_forward and kd_backward, but rather the section
			 * that was slid (if any) of the current
			 * forward/backward traversal only.
			 *
			 * For example:
			 *
			 *   o-o-o
			 *   | |
			 *   o A
			 *   |  \
			 *   o   o
			 *        \
			 *         M
			 *         |\
			 *         o o-o-o
			 *         | | |
			 *         o o X
			 *          \
			 *           o
			 *            \
			 *             o
			 *              \
			 *               o
			 *
			 * The backward traversal reached M from the bottom and
			 * slid upwards.  The forward traversal already reached
			 * X, which is not a straight line from M anymore, so
			 * picking a mid-snake from M to X would yield a
			 * mistake.
			 *
			 * The correct mid-snake is between M and A. M is where
			 * the backward traversal hit the diagonal that the
			 * forwards traversal has already passed, and A is what
			 * it reaches when sliding up identical lines.
			 */

			int forward_x = kd_forward[k];
			if (forward_x >= x) {
				if (x_before_slide != x) {
					/* met after sliding down a mid-snake */
					*meeting_snake = (struct diff_box){
						.left_start = x,
						.left_end = x_before_slide,
						.right_start = xc_to_y(x, c, delta),
						.right_end = xk_to_y(x_before_slide, k),
					};
				} else {
					/* met after a side step, non-identical
					 * line. Mark that as box divider
					 * instead. This makes sure that
					 * myers_divide never returns the same
					 * box that came as input, avoiding
					 * "infinite" looping. */
					*meeting_snake = (struct diff_box){
						.left_start = x,
						.left_end = prev_x,
						.right_start = xc_to_y(x, c, delta),
						.right_end = prev_y,
					};
				}
				debug("HIT x=%u,%u - y=%u,%u\n",
				      meeting_snake->left_start,
				      meeting_snake->right_start,
				      meeting_snake->left_end,
				      meeting_snake->right_end);
				debug_dump_myers_graph(left, right, NULL,
						       kd_forward, d,
						       kd_backward, d);
				*found_midpoint = true;
				return 0;
			}
		}
	}
	return 0;
}

/* Integer square root approximation */
static int
shift_sqrt(int val)
{
	int i;
        for (i = 1; val > 0; val >>= 2)
		i <<= 1;
        return i;
}

#define DIFF_EFFORT_MIN 1024

/* Myers "Divide et Impera": tracing forwards from the start and backwards from
 * the end to find a midpoint that divides the problem into smaller chunks.
 * Requires only linear amounts of memory. */
int
diff_algo_myers_divide(const struct diff_algo_config *algo_config,
		       struct diff_state *state)
{
	int rc = ENOMEM;
	struct diff_data *left = &state->left;
	struct diff_data *right = &state->right;
	int *kd_buf;

	debug("\n** %s\n", __func__);
	debug("left:\n");
	debug_dump(left);
	debug("right:\n");
	debug_dump(right);

	/* Allocate two columns of a Myers graph, one for the forward and one
	 * for the backward traversal. */
	unsigned int max = left->atoms.len + right->atoms.len;
	size_t kd_len = max + 1;
	size_t kd_buf_size = kd_len << 1;

	if (state->kd_buf_size < kd_buf_size) {
		kd_buf = reallocarray(state->kd_buf, kd_buf_size,
		    sizeof(int));
		if (!kd_buf)
			return ENOMEM;
		state->kd_buf = kd_buf;
		state->kd_buf_size = kd_buf_size;
	} else
		kd_buf = state->kd_buf;
	int i;
	for (i = 0; i < kd_buf_size; i++)
		kd_buf[i] = -1;
	int *kd_forward = kd_buf;
	int *kd_backward = kd_buf + kd_len;
	int max_effort = shift_sqrt(max/2);

	if (max_effort < DIFF_EFFORT_MIN)
		max_effort = DIFF_EFFORT_MIN;

	/* The 'k' axis in Myers spans positive and negative indexes, so point
	 * the kd to the middle.
	 * It is then possible to index from -max/2 .. max/2. */
	kd_forward += max/2;
	kd_backward += max/2;

	int d;
	struct diff_box mid_snake = {};
	bool found_midpoint = false;
	for (d = 0; d <= (max/2); d++) {
		int r;
		r = diff_divide_myers_forward(&found_midpoint, left, right,
					      kd_forward, kd_backward, d,
					      &mid_snake);
		if (r)
			return r;
		if (found_midpoint)
			break;
		r = diff_divide_myers_backward(&found_midpoint, left, right,
					       kd_forward, kd_backward, d,
					       &mid_snake);
		if (r)
			return r;
		if (found_midpoint)
			break;

		/* Limit the effort spent looking for a mid snake. If files have
		 * very few lines in common, the effort spent to find nice mid
		 * snakes is just not worth it, the diff result will still be
		 * essentially minus everything on the left, plus everything on
		 * the right, with a few useless matches here and there. */
		if (d > max_effort) {
			/* pick the furthest reaching point from
			 * kd_forward and kd_backward, and use that as a
			 * midpoint, to not step into another diff algo
			 * recursion with unchanged box. */
			int delta = (int)right->atoms.len - (int)left->atoms.len;
			int x = 0;
			int y;
			int i;
			int best_forward_i = 0;
			int best_forward_distance = 0;
			int best_backward_i = 0;
			int best_backward_distance = 0;
			int distance;
			int best_forward_x;
			int best_forward_y;
			int best_backward_x;
			int best_backward_y;

			debug("~~~ HIT d = %d > max_effort = %d\n", d, max_effort);
			debug_dump_myers_graph(left, right, NULL,
					       kd_forward, d,
					       kd_backward, d);

			for (i = d; i >= -d; i -= 2) {
				if (i >= -(int)right->atoms.len && i <= (int)left->atoms.len) {
					x = kd_forward[i];
					y = xk_to_y(x, i);
					distance = x + y;
					if (distance > best_forward_distance) {
						best_forward_distance = distance;
						best_forward_i = i;
					}
				}

				if (i >= -(int)left->atoms.len && i <= (int)right->atoms.len) {
					x = kd_backward[i];
					y = xc_to_y(x, i, delta);
					distance = (right->atoms.len - x)
						+ (left->atoms.len - y);
					if (distance >= best_backward_distance) {
						best_backward_distance = distance;
						best_backward_i = i;
					}
				}
			}

			/* The myers-divide didn't meet in the middle. We just
			 * figured out the places where the forward path
			 * advanced the most, and the backward path advanced the
			 * most. Just divide at whichever one of those two is better.
			 *
			 *   o-o
			 *     |
			 *     o
			 *      \
			 *       o
			 *        \
			 *         F <-- cut here
			 *
			 *
			 *
			 *           or here --> B
			 *                        \
			 *                         o
			 *                          \
			 *                           o
			 *                           |
			 *                           o-o
			 */
			best_forward_x = kd_forward[best_forward_i];
			best_forward_y = xk_to_y(best_forward_x, best_forward_i);
			best_backward_x = kd_backward[best_backward_i];
			best_backward_y = xc_to_y(best_backward_x, best_backward_i, delta);

			if (best_forward_distance >= best_backward_distance) {
				x = best_forward_x;
				y = best_forward_y;
			} else {
				x = best_backward_x;
				y = best_backward_y;
			}

			debug("max_effort cut at x=%d y=%d\n", x, y);
			if (x < 0 || y < 0
			    || x > left->atoms.len || y > right->atoms.len)
				break;

			found_midpoint = true;
			mid_snake = (struct diff_box){
				.left_start = x,
				.left_end = x,
				.right_start = y,
				.right_end = y,
			};
			break;
		}
	}

	if (!found_midpoint) {
		/* Divide and conquer failed to find a meeting point. Use the
		 * fallback_algo defined in the algo_config (leave this to the
		 * caller). This is just paranoia/sanity, we normally should
		 * always find a midpoint.
		 */
		debug(" no midpoint \n");
		rc = DIFF_RC_USE_DIFF_ALGO_FALLBACK;
		goto return_rc;
	} else {
		debug(" mid snake L: %u to %u of %u   R: %u to %u of %u\n",
		      mid_snake.left_start, mid_snake.left_end, left->atoms.len,
		      mid_snake.right_start, mid_snake.right_end,
		      right->atoms.len);

		/* Section before the mid-snake.  */
		debug("Section before the mid-snake\n");

		struct diff_atom *left_atom = &left->atoms.head[0];
		unsigned int left_section_len = mid_snake.left_start;
		struct diff_atom *right_atom = &right->atoms.head[0];
		unsigned int right_section_len = mid_snake.right_start;

		if (left_section_len && right_section_len) {
			/* Record an unsolved chunk, the caller will apply
			 * inner_algo() on this chunk. */
			if (!diff_state_add_chunk(state, false,
						  left_atom, left_section_len,
						  right_atom,
						  right_section_len))
				goto return_rc;
		} else if (left_section_len && !right_section_len) {
			/* Only left atoms and none on the right, they form a
			 * "minus" chunk, then. */
			if (!diff_state_add_chunk(state, true,
						  left_atom, left_section_len,
						  right_atom, 0))
				goto return_rc;
		} else if (!left_section_len && right_section_len) {
			/* No left atoms, only atoms on the right, they form a
			 * "plus" chunk, then. */
			if (!diff_state_add_chunk(state, true,
						  left_atom, 0,
						  right_atom,
						  right_section_len))
				goto return_rc;
		}
		/* else: left_section_len == 0 and right_section_len == 0, i.e.
		 * nothing before the mid-snake. */

		if (mid_snake.left_end > mid_snake.left_start
		    || mid_snake.right_end > mid_snake.right_start) {
			/* The midpoint is a section of identical data on both
			 * sides, or a certain differing line: that section
			 * immediately becomes a solved chunk. */
			debug("the mid-snake\n");
			if (!diff_state_add_chunk(state, true,
				  &left->atoms.head[mid_snake.left_start],
				  mid_snake.left_end - mid_snake.left_start,
				  &right->atoms.head[mid_snake.right_start],
				  mid_snake.right_end - mid_snake.right_start))
				goto return_rc;
		}

		/* Section after the mid-snake. */
		debug("Section after the mid-snake\n");
		debug("  left_end %u  right_end %u\n",
		      mid_snake.left_end, mid_snake.right_end);
		debug("  left_count %u  right_count %u\n",
		      left->atoms.len, right->atoms.len);
		left_atom = &left->atoms.head[mid_snake.left_end];
		left_section_len = left->atoms.len - mid_snake.left_end;
		right_atom = &right->atoms.head[mid_snake.right_end];
		right_section_len = right->atoms.len - mid_snake.right_end;

		if (left_section_len && right_section_len) {
			/* Record an unsolved chunk, the caller will apply
			 * inner_algo() on this chunk. */
			if (!diff_state_add_chunk(state, false,
						  left_atom, left_section_len,
						  right_atom,
						  right_section_len))
				goto return_rc;
		} else if (left_section_len && !right_section_len) {
			/* Only left atoms and none on the right, they form a
			 * "minus" chunk, then. */
			if (!diff_state_add_chunk(state, true,
						  left_atom, left_section_len,
						  right_atom, 0))
				goto return_rc;
		} else if (!left_section_len && right_section_len) {
			/* No left atoms, only atoms on the right, they form a
			 * "plus" chunk, then. */
			if (!diff_state_add_chunk(state, true,
						  left_atom, 0,
						  right_atom,
						  right_section_len))
				goto return_rc;
		}
		/* else: left_section_len == 0 and right_section_len == 0, i.e.
		 * nothing after the mid-snake. */
	}

	rc = DIFF_RC_OK;

return_rc:
	debug("** END %s\n", __func__);
	return rc;
}

/* Myers Diff tracing from the start all the way through to the end, requiring
 * quadratic amounts of memory. This can fail if the required space surpasses
 * algo_config->permitted_state_size. */
int
diff_algo_myers(const struct diff_algo_config *algo_config,
		struct diff_state *state)
{
	/* do a diff_divide_myers_forward() without a _backward(), so that it
	 * walks forward across the entire files to reach the end. Keep each
	 * run's state, and do a final backtrace. */
	int rc = ENOMEM;
	struct diff_data *left = &state->left;
	struct diff_data *right = &state->right;
	int *kd_buf;

	debug("\n** %s\n", __func__);
	debug("left:\n");
	debug_dump(left);
	debug("right:\n");
	debug_dump(right);
	debug_dump_myers_graph(left, right, NULL, NULL, 0, NULL, 0);

	/* Allocate two columns of a Myers graph, one for the forward and one
	 * for the backward traversal. */
	unsigned int max = left->atoms.len + right->atoms.len;
	size_t kd_len = max + 1 + max;
	size_t kd_buf_size = kd_len * kd_len;
	size_t kd_state_size = kd_buf_size * sizeof(int);
	debug("state size: %zu\n", kd_state_size);
	if (kd_buf_size < kd_len /* overflow? */
	    || (SIZE_MAX / kd_len ) < kd_len
	    || kd_state_size > algo_config->permitted_state_size) {
		debug("state size %zu > permitted_state_size %zu, use fallback_algo\n",
		      kd_state_size, algo_config->permitted_state_size);
		return DIFF_RC_USE_DIFF_ALGO_FALLBACK;
	}

	if (state->kd_buf_size < kd_buf_size) {
		kd_buf = reallocarray(state->kd_buf, kd_buf_size,
		    sizeof(int));
		if (!kd_buf)
			return ENOMEM;
		state->kd_buf = kd_buf;
		state->kd_buf_size = kd_buf_size;
	} else
		kd_buf = state->kd_buf;

	int i;
	for (i = 0; i < kd_buf_size; i++)
		kd_buf[i] = -1;

	/* The 'k' axis in Myers spans positive and negative indexes, so point
	 * the kd to the middle.
	 * It is then possible to index from -max .. max. */
	int *kd_origin = kd_buf + max;
	int *kd_column = kd_origin;

	int d;
	int backtrack_d = -1;
	int backtrack_k = 0;
	int k;
	int x, y;
	for (d = 0; d <= max; d++, kd_column += kd_len) {
		debug("-- %s d=%d\n", __func__, d);

		for (k = d; k >= -d; k -= 2) {
			if (k < -(int)right->atoms.len
			    || k > (int)left->atoms.len) {
				/* This diagonal is completely outside of the
				 * Myers graph, don't calculate it. */
				if (k < -(int)right->atoms.len)
					debug(" %d k <"
					      " -(int)right->atoms.len %d\n",
					      k, -(int)right->atoms.len);
				else
					debug(" %d k > left->atoms.len %d\n", k,
					      left->atoms.len);
				if (k < 0) {
					/* We are traversing negatively, and
					 * already below the entire graph,
					 * nothing will come of this. */
					debug(" break\n");
					break;
				}
				debug(" continue\n");
				continue;
			}

			if (d == 0) {
				/* This is the initializing step. There is no
				 * prev_k yet, get the initial x from the top
				 * left of the Myers graph. */
				x = 0;
			} else {
				int *kd_prev_column = kd_column - kd_len;

				/* Favoring "-" lines first means favoring
				 * moving rightwards in the Myers graph.
				 * For this, all k should derive from k - 1,
				 * only the bottom most k derive from k + 1:
				 *
				 *      | d=   0   1   2
				 *  ----+----------------
				 *  k=  |
				 *   2  |             2,0 <-- from
				 *      |            /        prev_k = 2 - 1 = 1
				 *   1  |         1,0
				 *      |        /
				 *   0  |  -->0,0     3,3
				 *      |       \\   /
				 *  -1  |         0,1 <-- bottom most for d=1
				 *      |           \\    from prev_k = -1+1 = 0
				 *  -2  |             0,2 <-- bottom most for
				 *                            d=2 from
				 *                            prev_k = -2+1 = -1
				 *
				 * Except when a k + 1 from a previous run
				 * already means a further advancement in the
				 * graph.
				 * If k == d, there is no k + 1 and k - 1 is the
				 * only option.
				 * If k < d, use k + 1 in case that yields a
				 * larger x. Also use k + 1 if k - 1 is outside
				 * the graph.
				 */
				if (k > -d
				    && (k == d
					|| (k - 1 >= -(int)right->atoms.len
					    && kd_prev_column[k - 1]
					       >= kd_prev_column[k + 1]))) {
					/* Advance from k - 1.
					 * From position prev_k, step to the
					 * right in the Myers graph: x += 1.
					 */
					int prev_k = k - 1;
					int prev_x = kd_prev_column[prev_k];
					x = prev_x + 1;
				} else {
					/* The bottom most one.
					 * From position prev_k, step to the
					 * bottom in the Myers graph: y += 1.
					 * Incrementing y is achieved by
					 * decrementing k while keeping the same
					 * x. (since we're deriving y from y =
					 * x - k).
					 */
					int prev_k = k + 1;
					int prev_x = kd_prev_column[prev_k];
					x = prev_x;
				}
			}

			/* Slide down any snake that we might find here. */
			while (x < left->atoms.len
			       && xk_to_y(x, k) < right->atoms.len) {
				bool same;
				int r = diff_atom_same(&same,
						       &left->atoms.head[x],
						       &right->atoms.head[
							xk_to_y(x, k)]);
				if (r)
					return r;
				if (!same)
					break;
				x++;
			}
			kd_column[k] = x;

			if (x == left->atoms.len
			    && xk_to_y(x, k) == right->atoms.len) {
				/* Found a path */
				backtrack_d = d;
				backtrack_k = k;
				debug("Reached the end at d = %d, k = %d\n",
				      backtrack_d, backtrack_k);
				break;
			}
		}

		if (backtrack_d >= 0)
			break;
	}

	debug_dump_myers_graph(left, right, kd_origin, NULL, 0, NULL, 0);

	/* backtrack. A matrix spanning from start to end of the file is ready:
	 *
	 *      | d=   0   1   2   3   4
	 *  ----+---------------------------------
	 *  k=  |
	 *   3  |
	 *      |
	 *   2  |             2,0
	 *      |            /
	 *   1  |         1,0     4,3
	 *      |        /       /   \
	 *   0  |  -->0,0     3,3     4,4 --> backtrack_d = 4, backtrack_k = 0
	 *      |        \   /   \
	 *  -1  |         0,1     3,4
	 *      |            \
	 *  -2  |             0,2
	 *      |
	 *
	 * From (4,4) backwards, find the previous position that is the largest, and remember it.
	 *
	 */
	for (d = backtrack_d, k = backtrack_k; d >= 0; d--) {
		x = kd_column[k];
		y = xk_to_y(x, k);

		/* When the best position is identified, remember it for that
		 * kd_column.
		 * That kd_column is no longer needed otherwise, so just
		 * re-purpose kd_column[0] = x and kd_column[1] = y,
		 * so that there is no need to allocate more memory.
		 */
		kd_column[0] = x;
		kd_column[1] = y;
		debug("Backtrack d=%d: xy=(%d, %d)\n",
		      d, kd_column[0], kd_column[1]);

		/* Don't access memory before kd_buf */
		if (d == 0)
			break;
		int *kd_prev_column = kd_column - kd_len;

		/* When y == 0, backtracking downwards (k-1) is the only way.
		 * When x == 0, backtracking upwards (k+1) is the only way.
		 *
		 *      | d=   0   1   2   3   4
		 *  ----+---------------------------------
		 *  k=  |
		 *   3  |
		 *      |                ..y == 0
		 *   2  |             2,0
		 *      |            /
		 *   1  |         1,0     4,3
		 *      |        /       /   \
		 *   0  |  -->0,0     3,3     4,4 --> backtrack_d = 4,
		 *      |        \   /   \            backtrack_k = 0
		 *  -1  |         0,1     3,4
		 *      |            \
		 *  -2  |             0,2__
		 *      |                  x == 0
		 */
		if (y == 0
		    || (x > 0
			&& kd_prev_column[k - 1] >= kd_prev_column[k + 1])) {
			k = k - 1;
			debug("prev k=k-1=%d x=%d y=%d\n",
			      k, kd_prev_column[k],
			      xk_to_y(kd_prev_column[k], k));
		} else {
			k = k + 1;
			debug("prev k=k+1=%d x=%d y=%d\n",
			      k, kd_prev_column[k],
			      xk_to_y(kd_prev_column[k], k));
		}
		kd_column = kd_prev_column;
	}

	/* Forwards again, this time recording the diff chunks.
	 * Definitely start from 0,0. kd_column[0] may actually point to the
	 * bottom of a snake starting at 0,0 */
	x = 0;
	y = 0;

	kd_column = kd_origin;
	for (d = 0; d <= backtrack_d; d++, kd_column += kd_len) {
		int next_x = kd_column[0];
		int next_y = kd_column[1];
		debug("Forward track from xy(%d,%d) to xy(%d,%d)\n",
		      x, y, next_x, next_y);

		struct diff_atom *left_atom = &left->atoms.head[x];
		int left_section_len = next_x - x;
		struct diff_atom *right_atom = &right->atoms.head[y];
		int right_section_len = next_y - y;

		rc = ENOMEM;
		if (left_section_len && right_section_len) {
			/* This must be a snake slide.
			 * Snake slides have a straight line leading into them
			 * (except when starting at (0,0)). Find out whether the
			 * lead-in is horizontal or vertical:
			 *
			 *     left
			 *  ---------->
			 *  |
			 * r|   o-o        o
			 * i|      \       |
			 * g|       o      o
			 * h|        \      \
			 * t|         o      o
			 *  v
			 *
			 * If left_section_len > right_section_len, the lead-in
			 * is horizontal, meaning first remove one atom from the
			 * left before sliding down the snake.
			 * If right_section_len > left_section_len, the lead-in
			 * is vetical, so add one atom from the right before
			 * sliding down the snake. */
			if (left_section_len == right_section_len + 1) {
				if (!diff_state_add_chunk(state, true,
							  left_atom, 1,
							  right_atom, 0))
					goto return_rc;
				left_atom++;
				left_section_len--;
			} else if (right_section_len == left_section_len + 1) {
				if (!diff_state_add_chunk(state, true,
							  left_atom, 0,
							  right_atom, 1))
					goto return_rc;
				right_atom++;
				right_section_len--;
			} else if (left_section_len != right_section_len) {
				/* The numbers are making no sense. Should never
				 * happen. */
				rc = DIFF_RC_USE_DIFF_ALGO_FALLBACK;
				goto return_rc;
			}

			if (!diff_state_add_chunk(state, true,
						  left_atom, left_section_len,
						  right_atom,
						  right_section_len))
				goto return_rc;
		} else if (left_section_len && !right_section_len) {
			/* Only left atoms and none on the right, they form a
			 * "minus" chunk, then. */
			if (!diff_state_add_chunk(state, true,
						  left_atom, left_section_len,
						  right_atom, 0))
				goto return_rc;
		} else if (!left_section_len && right_section_len) {
			/* No left atoms, only atoms on the right, they form a
			 * "plus" chunk, then. */
			if (!diff_state_add_chunk(state, true,
						  left_atom, 0,
						  right_atom,
						  right_section_len))
				goto return_rc;
		}

		x = next_x;
		y = next_y;
	}

	rc = DIFF_RC_OK;

return_rc:
	debug("** END %s rc=%d\n", __func__, rc);
	return rc;
}